Главная · Освещение · Цвет лампочек в кельвинах. Что лучше: теплый или холодный свет

Цвет лампочек в кельвинах. Что лучше: теплый или холодный свет


Чтобы выбрать для себя оптимальный светодиодный светильник, либо светодиодную лампу, нужно знать о некоторых параметрах, которые являются ключевыми при выборе. И помимо мощности, напряжения и прочего, таким параметром является цветовая температура. О ней то мы и поговорим здесь.

Грубо говоря, цветовая температура – это цвет свечения осветительного оборудования. Обычно обозначения цветовой температуры идут в пределах понятий «теплый свет» и «холодный свет», однако эти понятия довольно размыты, ведь, во-первых, каждый человек воспринимает цвет свечения по-своему, в зависимости от особенностей зрения, а во-вторых, разные производители заявляют понятия «холодного», «теплого» или «нейтрального» света для разных значений цветовой температуры, то есть именно цифра в Кельвинах будет наиболее точной характеристикой цветовой температуры светильника. Чтобы понимать, что означают эти цифры, нужно немного вникнуть в саму природу понятия, ну и не забывайте посматривать на таблицы, где наглядно написано, какая температура чему соответствует.

Само понятие цветовой температуры следует рассматривать, зная о том, что такое абсолютно черное тело (далее – АЧТ). Сам термин АЧТ был введен в использование в 1862 году великим немецким физиком Густавом Кирхгофом. Итак, АЧТ – это физическое тело, которое при любой температуре поглощает всё падающее на него электромагнитное излучение во всех диапазонах. Причем АЧТ само может испускать электромагнитное излучение любой частоты и визуально иметь цвет. Спектр излучения абсолютно чёрного тела определяется только его температурой. А вот интенсивность излучения АЧТ определяется по формуле Макса Планка, другого великого немецкого физика. Согласно этой формуле, цветовая температура определяется как температура АЧТ, при которой оно испускает излучение того же цветового тона, что и рассматриваемое излучение.

Однако гораздо проще рассматривать такие вещи на практике. Так как АЧТ – физическая абстракция, в реальности его не существует, рассматривается физиками сама модель, ну а мы для наглядности можем представить себе нить самой обычной лампы накаливания. Если ее разогревать до определенной температуры, то и оттенок свечения она будет выдавать разный, в полном соответствии со спектром излучения. Ниже приведен список, каким привычным нам источникам освещения соответствует та или иная цветовая температура:

800 К - начало видимого темно-красного свечения раскалённых тел;

1500-2000 К - свет пламени свечи;

2000 К - натриевая лампа высокого давления;

2200 К - лампа накаливания 40 Вт;

2680 К - лампа накаливания 60 Вт;

2800 К - лампа накаливания 100 Вт (вакуумная лампа);

2800-2854 К - газонаполненные лампы накаливания с вольфрамовой спиралью;

3000 К - лампа накаливания 200 Вт, галогенная лампа, люминесцентная лампа тёплого белого света;

Любой предмет в окружающем нас мире имеет температуру, выше абсолютного нуля, а значит, испускает тепловое излучение. Даже лед, у которого отрицательная температура, является источником теплового излучения. В это трудно поверить, но это так. В природе температура -89°С не самая низкая, можно достичь ещё более низких температур, правда, пока что, в лабораторных условиях. Самая низкая температура, которая на данный момент теоретически возможна в пределах нашей вселенной - это температура абсолютного нуля и она равна -273,15°С. При такой температуре прекращается движение молекул вещества и тела полностью перестают испускать любое излучение (тепловое, ультрафиолетовое, а уж тем более видимое). Полная тьма, нет ни жизни, ни тепла. Возможно, кто-нибудь из вас знает, что цветовая температура измеряется в Кельвинах. Кто покупал себе домой энергосберегающие лампочки, тот видел надпись на упаковке: 2700К или 3500К или 4500К. Это как раз и есть цветовая температура светового излучения лампочки. Но почему измеряется в Кельвинах, и что означает Кельвин? Эта единица измерения была предложена в 1848г. Ульямом Томсоном (он же лорд Кельвин) и официально утверждена в Международной Системе единиц. В физике и науках, имеющих непосредственное отношение к физике, термодинамическую температуру измеряют как раз Кельвинах. Начало отчета температурной шкалы начинается с точки0 Кельвин , что означат -273,15 градуса Цельсия . То есть - это и есть абсолютный нуль температуры . Можно легко перевести температуру из Цельсия в Кельвин. Для этого нужно просто прибавить число 273. Например, 0°С это 273К, тогда 1°С это 274К, по аналогии, температура тела человека 36,6°С это 36,6 + 273,15 = 309,75К. Вот так всё просто получается.

Чернее чёрного

С чего всё начинается? Всё начинается с нуля, в том числе и световое излучение. Черный цвет - это отсутствие света вовсе. С точки зрения цвета, черный - это 0 интенсивности излучения, 0 насыщенности, 0 цветового тона (его просто нет), это полное отсутствие всех цветов вообще. Почему мы видим предмет черным, а потому, что он почти полностью поглощает весь падающий на него свет. Существует такое понятие как абсолютно черное тело . Абсолютно черным телом называют идеализированный объект, который поглощает всё падающее на него излучение и ничего не отражающее. Конечно же, в реальности это недостижимо и абсолютно черных тел в природе не существует. Даже те предметы, которые кажутся нам черными, на самом деле не абсолютно черные. Но можно изготовить модель почти что абсолютно черного тела. Модель представляет собой куб с полой структурой внутри, в кубе проделано небольшое отверстие, через которое внутрь куба проникают световые лучи. Конструкция чем-то похожа на скворечник. Посмотрите на рисунок 1.

Рисунок 1 - Модель абсолютно черного тела.

Свет, попадающий внутрь сквозь отверстие, после многократных отражений будет полностью поглощён, и отверстие снаружи будет выглядеть совершенно чёрным. Даже если мы покрасим куб в черный цвет, отверстие будет чернее черного куба. Это отверстие и будет являться абсолютно черным телом . В прямом смысле слова, отверстие не является телом, а только лишь наглядно демонстрирует нам абсолютно черное тело.
Все объекты обладают тепловым излучением (пока их температура выше абсолютного нуля, то есть -273,15 градусов по Цельсию), но ни один объект не является идеальным тепловым излучателем. Одни объекты излучают тепло лучше, другие хуже, и всё это в зависимости от различных условий среды. Поэтому, применяют модель абсолютно черного тела. Абсолютно черное тело является идеальным тепловым излучателем . Мы можем даже увидеть цвет абсолютно черного тела, если его нагреть, и цвет, который мы увидим , будет зависеть от того, до какой температуры мы нагреем абсолютно черное тело. Мы вплотную подошли к такому понятию как цветовая температура. Посмотрите на рисунок 2.



Рисунок 2 - Цвет абсолютно черного тела в зависимости от температуры нагревания.

А) Есть абсолютно черное тело, мы его не видим вообще. Температура 0 Кельвин (-273,15 градуса Цельсия) - абсолютный нуль, полное отсутствие любого излучения.
б) Включаем «сверхмощное пламя» и начинаем нагревать наше абсолютно черное тело. Температура тела, посредством нагревания, повысилась до 273К.
в) Прошло ещё немного времени и мы уже видим слабое красное свечение абсолютно черного тела. Температура увеличилась до 800К (527°С).
г) Температура поднялась до 1300К (1027°С), тело приобрело ярко-красный цвет. Такой же цвет свечения вы можете увидеть при нагревании некоторых металлов.
д) Тело нагрелось до 2000К (1727°С), что соответствует оранжевому цвету свечения. Такой же цвет имеют раскаленные угли в костре, некоторые металлы при нагревании, пламя свечи.
е) Температура уже 2500К (2227°С). Свечение такой температуры приобретает желтый цвет. Трогать руками такое тело крайне опасно!
ж) Белый цвет - 5500К (5227°С), такой же цвет свечения у Солнца в полдень.
з) Голубой цвет свечения - 9000К (8727°С). Такую температуру путем нагреванием пламенем получить в реальности будет невозможно. Но такой порог температуры вполне достижим в термоядерных реакторах, атомных взрывах, а температура звезд во вселенной может достигать десятки и сотни тысяч Кельвин. Мы можем лишь увидеть такой же голубой оттенок света, например, у светодиодных фонарей, небесных светил или других источников света. Цвет неба в ясную погоду примерно такого же цвета.Подводя итог ко всему вышесказанному, можно дать четкое определение цветовой температуры. Цветовая температура - это температура абсолютно черного тела, при которой оно испускает излучение того же цветового тона, что и рассматриваемое излучение. Проще говоря, температура 5000К - это цвет, который приобретает абсолютно черное тело при нагревании его до 5000К. Цветовая температура оранжевого цвета - 2000К, это означает, что абсолютно черное тело необходимо нагреть до температуры 2000К, чтобы оно приобрело оранжевый цвет свечения.
Но цвет свечения раскаленного тела не всегда соответствует его температуре. Если пламя газовой плиты на кухне сине-голубого цвета, это не значит, что температура пламени свыше 9000К (8727°С). Расплавленное железо в жидком состоянии имеет оранжево-желтый оттенок цвета, что в действительности соответствует его температуре, а это примерно 2000К (1727°С).

Цвет и его температура

Чтобы представить себе как это выглядит в реальной жизни, рассмотрим цветовую температуру некоторых источников: ксеноновых автомобильных ламп на рисунке 3 и люминесцентных ламп на рисунке 4.


Рисунок 3 - Цветовая температура ксеноновых автомобильных ламп.


Рисунок 4 - Цветовая температура люминесцентных ламп.

В Википедии я нашел числовые значения цветовых температур распространенных источников света:
800 К — начало видимого темно-красного свечения раскалённых тел;
1500—2000 К — свет пламени свечи;
2200 К — лампа накаливания 40 Вт;
2800 К — лампа накаливания 100 Вт (вакуумная лампа);
3000 К — лампа накаливания 200 Вт, галогенная лампа;
3200—3250 К — типичные киносъёмочные лампы;
3400 К — солнце у горизонта;
4200 К — лампа дневного света (тёплый белый свет);
4300—4500 K — утреннее солнце и солнце в обеденное время;
4500—5000 К — ксеноновая дуговая лампа, электрическая дуга;
5000 К — солнце в полдень;
5500—5600 К — фотовспышка;
5600—7000 К — лампа дневного света;
6200 К — близкий к дневному свет;
6500 К — стандартный источник дневного белого света, близкий к полуденному солнечному свету;6500—7500 К — облачность;
7500 К — дневной свет, с большой долей рассеянного от чистого голубого неба;
7500—8500 К — сумерки;
9500 К — синее безоблачное небо на северной стороне перед восходом Солнца;
10 000 К — источник света с «бесконечной температурой», используемый в риф-аквариумах (актиниевый оттенок голубого цвета);
15 000 К — ясное голубое небо в зимнюю пору;
20 000 К — синее небо в полярных широтах.
Цветовая температура является характеристикой источника света. Любой видимый нами цвет имеет цветовую температуру и не важно, какой это цвет: красный, малиновый, желтый, пурпурный, фиолетовый, зеленый, белый.
Труды в области изучения теплового излучения абсолютно черного тела принадлежат основоположнику квантовой физики Максу Планку. В 1931 году на VIII сессии Международной комиссии по освещению (МКО, в литературе часто пишется как CIE) была предложена цветовая модель XYZ. Данная модель представляет собой диаграмму цветности. Модель XYZ представлена на рисунке 5.

Рисунок 5 - Диаграмма цветности XYZ.

Числовые значения X и Y определяют координаты цвета на диаграмме. Координата Z определяет яркость цвета, она в данном случае не задействована, так как диаграмма представлена в двухмерном виде. Но самое интересное на этом рисунке - это кривая Планка, которая характеризует цветовую температуру цветов на диаграмме. Рассмотрим её поближе на рисунке 6.




Рисунок 6 -Кривая Планка

Кривая Планка на этом рисунке немного урезана и «слегка» перевернута, но на это можно не обращать внимание. Чтобы узнать цветовую температуру какого-либо цвета, нужно просто продолжить линию перпендикуляра до интересующей вас точки (участка цвета). Линия перпендикуляра, в свою очередь, характеризует такое понятие как смещение - степень отклонения цвета в зеленый или пурпурный. Те, кто работал с RAW-конвертерами, знают такой параметр как Tint (Оттенок) - это и есть смещение. Рисунок 7 отображает панель настройки цветовой температуры в таких RAW-конверторах как Nikon Capture NX и Adobe CameraRAW.



Рисунок 7- Панель настройки цветовой температуры у разных конвертеров.

Пора посмотреть, как определяется цветовая температура не просто отдельного цвета, а всего фотоснимка в целом. Возьмем, к примеру, деревенский пейзаж в ясный солнечный полдень. Кто имеет практический опыт в фотосъемках, знает, что цветовая температура в солнечный полдень составляет примерно 5500К. Но мало кто знает, откуда взялась эта цифра. 5500К - это цветовая температура всей сцены , т.е всего рассматриваемого изображения (картины, окружающего пространства, участка поверхности). Естественно, что изображение состоит из отдельных цветов, а у каждого цвета своя цветовая температура. Что получается: голубое небо (12000К), листва деревьев в тени (6000К), трава на поляне (2000К), разного рода растительность (3200К - 4200К). В итоге, цветовая температура всего изображения будет равна усредненному значению всех эти участков, т.е 5500К. Рисунок 8 наглядно демонстрирует это.



Рисунок 8 - Расчет цветовой температуры сцены снятой в солнечный день.

Следующий пример иллюстрирует рисунок 9.



Рисунок 9 - Расчет цветовой температуры сцены снятой на закате солнца.

На рисунке изображен красный цветочный бутончик, который как будто бы растет из пшеничной крупы. Снимок был сделан летом в 22:30, когда солнце шло на закат. В этом изображении преобладает большое количество цветов желтого и оранжевого цветового тона, хотя на заднем плане есть и голубой оттенок с цветовой температурой примерно 8500К, также есть почти чистый белый цвет с температурой 5500К. Я взял лишь 5 самых основных цветов в этом изображении, сопоставил их с диаграммой цветности и посчитал среднюю цветовую температуру всей сцены. Это, конечно же, примерно, но соответствует истине. Всего в этом изображении 272816 цветов и каждый цвет имеет свою цветовую температуру, если подсчитать среднюю для всех цветов вручную, то через пару месяцев мы сможем получить значение ещё более точное, чем подсчитал я. А можно написать программу для расчета и получить ответ гораздо быстрее. Идем дальше: рисунок 10.



Рисунок 10 - Расчет цветовой температуры других источников освещения

Ведущие шоу-программы решили не грузить нас расчетами цветовой температуры и сделали всего два источника освещения: прожектор, испускающий бело-зеленый яркий свет и прожектор, который светит красным светом, и всё это дело разбавили дымом….а, ну да - и поставили ведущего на передний план. Дым прозрачный, поэтому с легкостью пропускает красный свет прожектора и сам становится красный, а температура нашего красного цвета, согласно диаграмме - 900К. Температура второго прожектора - 5700К. Среднее между ними - 3300К Остальные участки изображения можно в расчет не брать - они почти черные, а такой цвет даже не попадает на кривую Планка на диаграмме, ведь видимое излучение раскаленных тел начинается примерно с 800К (красный цвет). Чисто теоретически, можно предположить и даже подсчитать температуру для темных цветов, но её значение будет пренебрежимо мало по сравнению с теми же 5700К.
И последнее изображение на рисунке 11.



Рисунок 11 - Расчет цветовой температуры сцены снятой в вечернее время.

Снимок сделан летним вечером после захода солнца. Цветовая температура неба располагается в районе синего цветового тона на диаграмме, что согласно кривой Планка, соответствует температуре примерно 17000К. Прибрежная растительность зеленого цвета имеет цветовую температуру примерно 5000К, а песок с водорослями имеет цветовую температуру где-то 3200К. Среднее значение всех этих температур примерно 8400К.

Баланс белого

С настройками баланса белого особенно хорошо знакомы любители и профессионалы занимающиеся видео и фотосъемками. В меню каждой, даже самой простой мыльницы-фотокамеры, есть возможность настроить этот параметр. Значки режимов настройки баланса белого выглядят примерно так, как показано на рисунке 12.



Рисунок 12 - Режимы настройки баланса белого в фотокамере (видеокамере).

Сразу следует сказать, что белый цвет объектов можно получить, если использовать источник света с цветовой температурой 5500К (это может быть солнечный свет, фотовспышка, другие искусственные осветители) и если сами рассматриваемые объекты белого цвета (отражают всё излучение видимого света). В остальных случаях белый цвет может быть лишь приближен к белому. Посмотрите на рисунок 13. На нем изображена та самая диаграмма цветности XYZ, которую мы недавно рассматривали, а в центре диаграммы помечена крестиком точка белого цвета.


Рисунок 13 - Точка белого цвета.

Отмеченная точка имеет цветовую температуру 5500К и как истинный белый цвет – она является суммой всех цветов спектра. Координаты у неё x = 0,33 и y = 0,33. Эта точка называется точкой равных энергий . Точка белого цвета. Естественно, если цветовая температура источника освещения 2700К, точка белого здесь и рядом не стоит, о каком уж тут белом цвете можно говорить? Там белых цветов никогда не будет! Белыми в данном случае могут быть только блики. Пример такого случая приведен на рисунке 14.



Рисунок 14 – Различная цветовая температура.

Баланс белого цвета – это установка значения цветовой температуры для всего изображения. При правильной установке вы получите цвета соответствующие тому изображению, которое вы видите. Если у получившегося снимка преобладают неестественные синие и голубые цветовые тона, значит, цвета «недостаточно нагреты», установлена слишком низкая цветовая температура сцены, необходимо её повысить. Если же на всём снимке преобладает красный тон – цвета «перегреты», установлена слишком высокая температура, необходимо её понизить. Пример тому - рисунок 15.



Рисунок 15 – Пример правильной и неправильной установки цветовой температуры

Цветовая температура всей сцены рассчитывается как средняя температура всех цветов данного изображения, поэтому в случае смешанных источников освещения или сильно отличающихся по цветовому тону цветов, фотокамера рассчитает среднюю температуру, что не всегда оказывается верно.
Пример одного такого некорректного расчета продемонстрирован на рисунке 16.



Рисунок 16 – Неизбежная неточность в установке цветовой температуры

Фотокамера не способна воспринимать резко отличающиеся яркости отдельных элементов изображения и их цветовую температуру так же, как зрение человека. Поэтому, чтобы сделать изображение почти таким же, как вы видели во время съемки, вам придется его корректировать в ручную в соответствии с вашим зрительным восприятием.

Эта статья больше предназначена для тех, кто ещё недостаточно хорошо знаком с понятием цветовой температуры и хотел бы узнать больше. Статья не содержит сложных математических формул и точных определений некоторых физический терминов. Благодаря вашим замечаниям, которые вы написали в комментариях, я внес небольшие поправки в некоторые абзацы статьи. Прощу прощения, за допущенные неточности.

При выборе ламп для светового оформления своего жилья рекомендуем обратить внимание на показатель их цветовой температуры, поскольку от него зависит не только яркость, но и оттенок их свечения. То же касается выбора автомобильных ламп, гарантирующих безопасность водителю и пассажирам при езде в темное время суток.

Безопасность водителя во время дорожного движения обеспечивают автомобильные лампы. От того, насколько оптимальным является спектр их излучения, обеспечивающий хорошую видимость на дороге, скажет цветовая температура. Эта физическая величина считается основной характеристикой свечения автомобильных ламп. По этому же принципу следует подбирать свет для дома. Освещение в жилых и нежилых комнатах можно организовать теплых и холодных тонов. С помощью разных источников можно создать невероятную игру света и обеспечить потрясающую атмосферу в любом помещении. Более подробно обо всем этом, в нашей статье.

Что представляет собой данная величина?

Температура света, которую принято измерять в кельвинах, является главным световым показателем светотехники. Она характеризует особенности ее излучения и отвечает за следующие характеристики:

  • Спектральные свойства;
  • Оттенок свечения;
  • Индекс светопередачи.

Она равняется степени нагрева АЧТ (абсолютно черного тела, поглощающего падающее на него излучение во всех диапазонах). С помощью этого показателя, к примеру, измеряется цветовая температура люминесцентных ламп. АЧТ может выступать раскаленный твердый объект. При изменении степени его нагрева будет меняться спектр излучения – он постепенно будет переходить от синего к красному оттенку при остывании и, наоборот, от красному к синему при нагревании. При этом оттенки друг друга сменять будут последовательно. Красный оттенок заменит оранжевый, оранжевый – желтый, желтый – белый. Температура раскаленного АЧТ соответствует голубому люминесцентному излучению.

Цветовая температура ламп накаливания не превышает 3000 к. Именно до этого показателя нагреваются ее основные рабочие элементы – нити, которые обеспечивают им теплый красноватый оттенок. По такому же принципу устанавливаются световые характеристики прочих источников света. Лишь в светодиодных лампах этот показатель не соответствует уровню их нагрева. Почти 3000 к будет уже при накаливании светодиода до 80 градусов.

Спектр излучения АЧТ становится видимым при достижении отметки в 1200 к, то есть пределов теплых красных оттенков. Далее, при нагреве до 2000 к, красный цвет излучения сменится на оранжевый, а при достижении показателя в 3000 к он станет желтым. Это свечение может быть, как в теплой, так и в холодной гамме.

Максимальная цветовая температура ламп накаливания, в которых в качестве рабочего элемента используется вольфрамовая спираль, не превышает 3500 к. А вот прочие источники света вполне могут разогреваться и дальше. Например, цветовая температура светодиодов запросто доходит до 5500 к, при которой они излучают насыщенный белый цвет. А при достижении ею отметки в 6000 к, свечение их станет слегка голубоватым. При дальнейшем их разогреве голубой цвет излучения будет становиться все более и более насыщенным. И, как только ее показатель достигнет отметки в 18000 к, излучение достигнет фиолетовой границы спектра.

Как от этого показателя зависит тип освещения?

К освещению домов и квартир, в наши дни, предъявляются особые требования, при этом внимание уделяется цветовому восприятию выбранных световых оттенков. То же касается света автомобильных фар, который должен быть не только приятным для глаз, но и четко освещать дорогу по пути следования автомобиля. Как уже было упомянуто выше, свечение может быть, либо теплой, либо холодной световой гаммы. Каждому световому оттенку соответствует определенный показатель. Узнать цветовая температура 4000 к какой это цвет, поможет наша таблица цветовой температуры.

Световая оттеночная гамма ЦТ Где используется
Теплый белый, красновато-белый 2700 к В лампах накаливания
Теплый белый, желто-белый 3000 к В галогенках
Обычный белый (лампы дневного света) 3500 к В люминесцентных колбах
Холодный белый 4000 к В светодиодах, используемых для освещения помещений
Обычный дневной 5000 – 6000 к В светодиодах, установленных в оранжереях
Холодный дневной 6500 к В светодиодахх, используемых для подсветки профессиональных фото- и кино студий

Данная таблица позволит правильно подобрать осветительные приборы для того, чтобы добиться оптимальной освещенности любого помещения. Но при этом нужно иметь в виду, что интенсивность излучения, равно как и цветовая температура ламп, воспринимается по-иному на протяжении суток.


В настоящее время огромное количество осветительных приборов оснащается светодиодами, которые обеспечивают им свечение. Какой будет цветовая температура светодиодных ламп, таблица, приведенная ниже, наглядно продемонстрирует.

Светодиодные лампы широко используются и для внутреннего, и для наружного освещения, а также для световой рекламы и автомобильных фар. Цветовую температуру используют в качестве основного показателя яркости и дальности их свечения.

Градация светодиодов с белым излучением

Со всеми оттенками белого свечения весьма востребованы у потребителей, благодаря своей широкой сфере использования. Светодиоды нашли свое применение в оформлении фото студий, оранжерей, выставочных залов. Их используют в различных осветительных приборах внутреннего и наружного освещения, в новогодних гирляндах, автомобильных фарах и т.д.


Цветовая температура светодиодов холодного белого излучения лежит в диапазоне от 5000 до 7000 к. К их преимуществам относят высокую контрастность, благодаря которой их стали широко использовать в автолампах. Но при этом нужно иметь в виду, что холодный белый свет очень сильно искажает цветовосприятие.

Нейтрально белый свет, данный показатель которого колеблется в пределах от 2500 до 6000 к, идеально подходит для полноценного освещения небольших участков дороги. То же касается автомобильных фар, излучающих теплый белый свет. Они идеально подходят для езды при сложных погодных условиях – сильном ливне, ветре, тумане. Эффективность их не теряется и под водой.

Цветовые характеристики автоламп

Данный показатель имеет крайне важное значение при выборе автоламп. Ведь от правильно подобранного ближнего и дальнего света зависит безопасность водителя и пассажиров во время движения авто в темное время суток или при сложных погодных условиях. Для обеспечения свечения автомобильных фар используются разные виды ламп, их шкала цветовой температуры приведена ниже:

  • Галогенные

3200 к – стандартный оттенок свечения автомобильных фар, идеально подходящий для езды в темное время суток и при непогоде;

5000 к – естественный белый свет, обеспечивающий хорошее освещение дорожного покрытия во время ночных поездок.

  • Ксеноновые

4500 к – оптимальные оттенки свечения, идеально подходящие для езды при непогоде и в темное время суток;

6000 к – они излучают естественный дневной свет и потому отлично подходят для использования при езде в темное время суток.

  • Диодные лампочки

5000 к – белый цвет повышенной яркости, позволяющий хорошо видеть, не только дорожное полотно, но и нанесенную на него разметку;

6000 к – насыщенный белый цвет с чуть голубоватым оттенком, который одновременно обеспечивает и практическую и декоративную функцию фар.

8000 к – синий и сине-фиолетовый цвет используется исключительно для декора авто. Он имеет низкую мощность и потому не может быть единственным источником света автомобильных фар.

10000 к – насыщенный сине-фиолетовый оттенок, они используются исключительно для шоу-каров.


12000 к – синее свечение с легким фиолетовым цветовым оттенком, запрещены к использованию во время дорожного движения. На авто они могут быть установлены на выставке или шоу-каре для привлечения внимания к его модели.

Какой цвет излучения головной и периферийной оптики автомобиля выбрать, решает сам автомобилист, в зависимости от своих индивидуальных предпочтений и особенностей эксплуатации авто.

Что представляет собой индекс цветопередачи?

Индекс цветопередачи – это еще один важный показатель свечения всех автомобильных ламп, который передает насыщенность их света и восприятие человеческим глазом в зависимости от цветовой температуры. Здесь все, очень просто, чем выше данный показатель, тем выше индекс цветопередачи. Это хорошо представлено в таблице.

Подводя итоги нужно отметить, что цветовая температура является важной характеристикой всех осветительных приборов и, в частности, автомобильных ламп. Она неразрывно связана с яркостью свечения и напрямую влияет на восприятие глазами человека искусственного света и видимость дорожного полотна в темное время суток или при непогоде. Индекс цветопередачи светодиодных ламп всегда на высоте.


Для езды в темное время суток лучше использовать лампы, свечение которых находится в диапазоне от 4300 до 6000 к, а при сильном дожде, дымке или тумане лучше использовать те источники света, данный показатель которых лежит в пределах 2400 – 3200 к. Отличную цветопередачу обеспечивают все типы современных ламп – галогенные, ксеноновые и светодиодные. Они позволят создать в вашем доме оптимальное освещение, идеально подходящее для подчеркивания всех сильных сторон домашнего интерьера и максимального скрытия возможных недостатков его оформления. Данный показатель имеется на всех современных лампочках, поэтому выбрать подходящий вариант труда рядовому пользователю не составит.

В современном мире зрение каждого человека испытывает повышенную нагрузку: мониторы компьютеров, экраны телевизоров и всевозможных гаджетов постоянно у нас перед глазами, на работе и дома. Поэтому многих людей, стремящихся компенсировать ущерб для зрения хотя бы там, где это возможно, волнует, какой свет лучше. Кроме того, цвет освещения влияет на восприятие интерьера комнаты, может его выгодно подчеркнуть или, напротив, неприятно исказить цвета. Из этого следует, что даже к такой мелочи, как выбор лампочки, нужно отнестись со вниманием.

Влияние цвета освещения на человека

Волноваться по поводу взаимосвязи цвета осветительных приборов и здоровья глаз не стоит: он не влияет на зрение. Однако определенное воздействие на человека оттенок освещения все-таки оказывает: в некоторой степени от него зависит наше психоэмоциональное состояние и настроение. Теплый свет способствует расслаблению, холодный – бодрит и держит в тонусе, поэтому каждый из них хорош на своем месте и в свое время. Давайте разбираться, какой искусственный свет лучше и полезнее для глаз – теплый или холодный белый?


Сколько ни пытаются компании, занимающиеся разработкой приборов искусственного освещения, создать лампочку, полностью соответствующую по всем параметрам естественному солнечному свету, на сегодняшний день эти попытки безрезультатны.

Цветовая температура источника

Чтобы узнать, каким будет свет от энергосберегающей или светодиодной лампы, нужно обратить внимание на значение цветовой температуры, указанное на упаковке. Единица измерения – Кельвин (К). Чем ниже эта величина, тем более желтым будет свечение. Освещение от лампочки, имеющей высокую цветовую температуру, имеет голубоватый оттенок. Чаще всего встречаются три основных цвета освещения:

  1. Белый теплый – 2700–3500 К.
  2. Нейтральный или естественный белый – 3500–5000 К.
  3. Холодный белый – 5000–5400 К.


Какой оттенок подойдет для разных частей квартиры, читайте далее.

Теплый свет

Освещение теплого белого цвета с привычным желтоватым оттенком комфортно и приятно для человеческих глаз, его свечение такое же, как у желтого солнечного света ранним утром или ближе к закату. Его могут обеспечить как обычные лампы накаливания, так и галогенные. Также можно найти в продаже люминесцентные и светодиодные устройства с излучением теплого спектра. Где лучше всего использовать такой свет?

  • В гостиной. Рекомендуется организовать тепловатое освещение в помещениях, где требуется создать непринужденную и уютную атмосферу. К примеру, в комнате, где семья собирается по вечерам, чтобы поужинать и пообщаться.


В гостиной лучше всего установить рассеивающую люстру.

  • В кухне. Теплое освещение прекрасно подойдет для зоны над обеденным столом: блюда будут выглядеть аппетитнее и красивее.
  • В ванной. Мягкий тепловатый свет в зоне для купания поможет расслабиться.
  • В спальне. Именно в этой комнате особенно важно создать ощущение спокойствия и комфорта, чтобы глаза могли отдохнуть.


Лампы с теплым спектром используются дизайнерами для увеличения цветовой насыщенности предметов интерьера мягких тонов. Холодные оттенки, наоборот, станут менее заметными.
Синий и зеленый цвета будут искажены: это происходит из-за того, что в свете от такой лампы отсутствуют лучи соответствующего спектра.


При подобном освещении прохладные тона меняются следующим образом:

  • голубой может казаться зеленоватым;
  • синий станет блеклым;
  • темно-синий превратится в черный;
  • фиолетовый можно будет перепутать с красным.

Именно поэтому нужно продумать все детали заранее, перед покупкой лампы, чтобы освещаемое помещение не приобрело нежелательный или даже неприятный вид.


Естественный белый свет

Галогенные и некоторые люминесцентные лампы дают освещение, максимально приближенное к естественному белому свету, поэтому цвета практически не искажаются. Целесообразно устанавливать их:

  • в детских комнатах;
  • в прихожей;
  • в рабочей зоне кухни;
  • в месте, предназначенном для чтения, например возле кресла или в спальне над кроватью;
  • рядом с зеркалами, поскольку они верно передают оттенок кожи.


Необходимо помнить, что важно правильно расположить источник освещения относительно зеркал и отражающих поверхностей, чтобы не ослеплять смотрящего в них человека.

Холодный свет

Свет холодного цветового спектра напоминает белое зимнее солнце. Его часто используют в офисных помещениях, а также везде, где необходимо создать рабочее настроение. Именно нейтральные и прохладные оттенки подойдут для тех мест, где предполагается наличие одновременно естественного и искусственного освещения, так как эти тона помогут улучшить концентрацию.

Холодный световой поток воспринимается человеческим глазом как более яркий и интенсивный.

В квартирах лампы с таким излучением чаще всего используют:

  • На кухне, где для приготовления еды требуется акцентное освещение.
  • В кабинете, поскольку такое излучение уравновешивает и повышает работоспособность.
  • В ванной, в зоне для умывания – холодное голубоватое освещение поможет взбодриться и до конца проснуться.
  • В жилых комнатах рекомендуется использовать этот спектр тогда, когда они имеют современный дизайн и много свободного пространства.


Цвета при таком освещении тоже искажаются, но изменения касаются только тепловатых оттенков. Красный, оранжевый и желтый цвета будут казаться фиолетовым, коричневым и зеленоватым соответственно. А вот синие и зеленые тона, напротив, будут выглядеть насыщенными и сочными.

Обратите внимание! На цвет освещения влияет не только свечение лампочки, но и окраска ее колбы, а также абажура или плафона.

Другие параметры источников освещения

Чтобы правильно выбрать лампочку, имеет смысл обратить внимание не только на цвет, но и на другие ее параметры. Все используемые сегодня источники освещения характеризуются несколькими признаками:

  1. Принцип действия. Выделяют светодиодные, люминесцентные, галогенные, а также всем известные лампы накаливания.
  2. Конфигурация колбы. Самые распространенные типы – грушевидные, шарообразные, трубчатые, в форме гриба и так называемые споты.
  3. КПД. Наиболее высоким показателем на сегодняшний день обладают светодиодные лампочки.
  4. Стоимость. Самые дешевые источники света – лампы накаливания, наиболее дорогие – светодиодные. В то же время последние отличаются экологичностью и расходуют намного меньше электроэнергии.