Главная · Инструмент · Деление ядер урана и цепная реакция. Цепная ядерная реакция

Деление ядер урана и цепная реакция. Цепная ядерная реакция

Теория относительности говорит, что масса - это особая форма энергии. Из этого следует, что можно преобразовать массу в энергию и энергию в массу. На внутриатомном уровне такие реакции имеют место. В частности, некоторое количество массы самого вполне может превратиться в энергию. Это происходит по нескольким путям. Во-первых, ядро может распасться на некоторое количество более мелких ядер, эта реакция называется «распадом». Во-вторых, более мелкие ядра могут запросто соединиться, чтобы получилось более крупное, - это реакция синтеза. Во Вселенной такие реакции весьма распространены. Достаточно сказать, что реакция синтеза - источник энергии для звезд. А вот реакция распада используется человечеством на так как люди научились контролировать эти сложные процессы. Но что же такое цепная ядерная реакция? Как ею управлять?

Что происходит в ядре атома

Цепная ядерная реакция - процесс, идущий при столкновении элементарных частиц или ядер с другими ядрами. Почему «цепная»? Это совокупность последовательных одиночных ядерных реакций. В результате этого процесса происходит изменение квантового состояния и нуклонного состава у исходного ядра, появляются даже новые частицы - продукты реакции. Цепная ядерная реакция, физика которой позволяет исследовать механизмы взаимодействия ядер с ядрами и с частицами, - это основной метод для получения новых элементов и изотопов. Для того чтобы понять протекание цепной реакции, надо вначале разобраться с одиночными.

Что нужно для реакции

Для того чтобы осуществить такой процесс, как цепная ядерная реакция, необходимо сблизить частицы (ядро и нуклон, два ядра) на расстояние радиуса сильного взаимодействия (примерно один ферми). Если расстояния большие, то взаимодействие заряженных частиц будет чисто кулоновским. В ядерной реакции соблюдаются все законы: сохранение энергии, момента, импульса, барионного заряда. Цепная ядерная реакция обозначается набором символов а, b, с, d. Символ а обозначает исходное ядро, b - налетающую частицу, с - новую вылетающую частицу, а d обозначает результирующее ядро.

Энергия реакции

Цепная ядерная реакция может проходить как с поглощением, так и с выделением энергии, которая равняется разности масс частиц после реакции и до нее. Поглощаемая энергия определяет минимальную кинетическую энергию столкновения, так называемый порог ядерной реакции, при которой она может свободно протекать. Данный порог зависит от частиц, которые участвуют во взаимодействии, и от их характеристик. На начальном этапе все частицы находятся в заранее определенном квантовом состоянии.

Осуществление реакции

Основным источником заряженных частиц, которыми бомбардируется ядро, является который дает пучки протонов, тяжелых ионов и легких ядер. Медленные нейтроны получают благодаря использованию ядерных реакторов. Для фиксации налетающих заряженных частиц могут быть использованы разные типы ядерных реакций - как синтеза, так и распада. Вероятность их зависит от параметров частиц, которые сталкиваются. С этой вероятностью связана такая характеристика, как сечение реакции - величина эффективной площади, которая характеризует ядро в качестве мишени для налетающих частиц и которая является мерой вероятности вступления частицы и ядра во взаимодействие. Если в реакции принимают участие частицы с ненулевым значением спина, то сечение напрямую зависит от их ориентации. Так как спины налетающих частиц ориентированы не совсем хаотично, а более-менее упорядоченно, то все корпускулы будут поляризованы. Количественная характеристика ориентированных спинов пучка описывается вектором поляризации.

Механизм реакции

Что такое цепная ядерная реакция? Как уже говорилось, это последовательность более простых реакций. Характеристики налетающей частицы и ее взаимодействия с ядром зависят от массы, заряда, кинетической энергии. Взаимодействие определяется степенью свободы ядер, которые и возбуждаются при столкновении. Получение контроля над всеми этими механизмами позволяет проводить такой процесс, как управляемая цепная ядерная реакция.

Прямые реакции

Если заряженная частица, которая налетает на ядро-мишень, только касается его, то длительность столкновения будет равна необходимому для преодоления расстояния радиуса ядра. Такую ядерную реакцию называют прямой. Общей характеристикой для всех реакций такого типа является возбуждение малого числа степеней свободы. В таком процессе после первого столкновения частица имеет еще достаточно энергии для преодоления ядерного притяжения. К примеру, такие взаимодействия, как неупругое рассеивание нейтронов, обмен заряда, и относятся к прямым. Вклад таких процессов в характеристику под названием "полное сечение" достаточно мизерный. Однако распределение продуктов прохождения прямой ядерной реакции позволяет определить вероятность вылета от угла направления пучка, селективность заселенных состояний и определить их структуру.

Предравновесная эмиссия

Если частица не покинет область ядерного взаимодействия после первого же столкновения, то она будет вовлечена в целый каскад из последовательных столкновений. Это фактически как раз то, что называется цепной ядерной реакцией. В результате такой ситуации кинетическая энергия частицы распределяется среди составляющих частей ядра. Само же состояние ядра будет постепенно сильно усложняться. Во время этого процесса на каком-то нуклоне или же целом кластере (группе нуклонов) может быть сконцентрирована энергия, достаточная для эмиссии этого нуклона из ядра. Дальнейшая релаксация приведет к формированию статистического равновесия и образования составного ядра.

Цепные реакции

Что такое цепная ядерная реакция? Это последовательность ее составных частей. То есть множественные последовательные единичные ядерные реакции, вызванные заряженными частицами, появляются как продукты реакции на предыдущих шагах. Что называется цепной ядерной реакцией? К примеру, деление тяжелых ядер, когда множественные акты деления инициируются полученными при предыдущих распадах нейтронами.

Особенности цепной ядерной реакции

Среди всех химических реакций большое распространение получили именно цепные. Частицы с неиспользованными связями выполняют роль свободных атомов или радикалов. При таком процессе, как цепная ядерная реакция, механизм ее протекания обеспечивают нейтроны, которые не имеют кулоновского барьера и возбуждают ядро при поглощении. Если в среде появляется необходимая частица, то она вызывает цепь последующих превращений, которые будут продолжаться до разрыва цепи из-за потери частицы-носителя.

Почему теряется носитель

Есть всего две причины потери частицы-носителя непрерывной цепи реакций. Первая заключается в поглощении частицы без процесса испускания вторичной. Вторая - уход частички за предел объема вещества, которое поддерживает цепной процесс.

Два типа процесса

Если в каждом периоде цепной реакции рождается исключительно единичная частичка-носитель, то можно назвать этот процесс неразветвленным. Она не может привести к выделению энергии в больших масштабах. Если же появилось много частиц-носителей, то это называется разветвленной реакцией. Что такое цепная ядерная реакция с разветвлением? Одна из полученных в предыдущем акте вторичных частиц продолжит начатую ранее цепь, а вот другие создадут новые реакции, которые тоже будут ветвиться. С этим процессом будут конкурировать приводящие к обрыву процессы. Полученная в результате ситуация будет порождать специфические критические и предельные явления. Например, если обрывов больше, чем чисто новых цепей, то самоподдерживание реакции будет невозможным. Даже если возбудить ее искусственно, введя в данную среду нужное количество частиц, то процесс все равно будет затухать со временем (обычно довольно быстро). Если же количество новых цепей будет превосходить количество обрывов, то цепная ядерная реакция начнет распространяться по всему веществу.

Критическое состояние

Критическим состоянием отделяют область состояния вещества с развитой самоподдерживающейся цепной реакцией, и область, где данная реакция невозможна вообще. Этот параметр характеризуется равенством между количеством новых цепей и числом возможных обрывов. Как и наличие свободной частицы-носителя, критическое состояние является основным пунктом в таком списке, как «условия осуществления цепной ядерной реакции». Достижение этого состояния может быть определено целым рядом возможных факторов. тяжелого элемента возбуждается всего одним нейтроном. В результате такого процесса, как цепная ядерная реакция деления, появляется больше нейтронов. Следовательно, этот процесс может произвести разветвленную реакцию, где носителями и будут выступать нейтроны. В том случае, когда скорость захватов нейтронов без деления или вылетов (скорость потери) будет компенсироваться скоростью размножения несущих частиц, то цепная реакция будет протекать в стационарном режиме. Это равенство характеризует коэффициент размножения. В приведенным выше случае он равен единице. В благодаря введению между скоростью выделения энергии и коэффициентом размножения возможно осуществить управление протеканием ядерной реакции. Если же этот коэффициент будет больше чем единица, то реакция будет развиваться по экспоненте. Неуправляемые цепные реакции используют в ядерном оружии.

Цепная ядерная реакция в энергетике

Реактивность реактора определяется большим количеством процессов, которые происходят в его активной зоне. Все эти влияния определяются так называемым коэффициентом реактивности. Влияние изменения температуры графитовых стержней, теплоносителей или урана на реактивность реактора и интенсивность протекания такого процесса, как цепная ядерная реакция, характеризуются температурным коэффициентом (по теплоносителю, по урану, по графиту). Также есть зависимые характеристики по мощности, по барометрическим показателям, по паровым показателям. Для поддержания ядерной реакции в реакторе необходимо превращение одних элементов в другие. Для этого нужно учитывать условия протекания цепной ядерной реакции - наличие вещества, которое способно делиться и выделять из себя при распаде некоторое количество элементарных частиц, которые, как следствие, будут вызывать деление остальных ядер. В качестве такого вещества зачастую используют уран-238, уран-235, плутоний-239. Во время прохождения цепной ядерной реакции изотопы данных элементов будут распадаться и образовывать два и более других химических веществ. При этом процессе излучаются так называемые «гамма»-лучи, происходит интенсивное выделение энергии, образуются два или три нейтрона, способные продолжить акты реакции. Различают медленные нейтроны и быстрые, ведь для того чтобы ядро атома распалось, эти частички должны пролететь с определенной скоростью.

Цепная ядерная реакция

Цепна́я я́дерная реа́кция - последовательность единичных ядерных реакций , каждая из которых вызывается частицей, появившейся как продукт реакции на предыдущем шаге последовательности. Примером цепной ядерной реакции является цепная реакция деления ядер тяжёлых элементов, при которой основное число актов деления инициируется нейтронами , полученными при делении ядер в предыдущем поколении.

Механизм энерговыделения

Превращение вещества сопровождается выделением свободной энергии лишь в том случае, если вещество обладает запасом энергий. Последнее означает, что микрочастицы вещества находятся в состоянии с энергией покоя большей, чем в другом возможном, переход в которое существует. Самопроизвольному переходу всегда препятствует энергетический барьер , для преодоления которого микрочастица должна получить извне какое-то количество энергии - энергии возбуждения. Экзоэнергетическая реакция состоит в том, что в следующем за возбуждением превращении выделяется энергии больше, чем требуется для возбуждения процесса. Существуют два способа преодоления энергетического барьера: либо за счёт кинетической энергии сталкивающихся частиц, либо за счёт энергии связи присоединяющейся частицы.

Если иметь в виду макроскопические масштабы энерговыделения, то необходимую для возбуждения реакций кинетическую энергию должны иметь все или сначала хотя бы некоторая доля частиц вещества. Это достижимо только при повышении температуры среды до величины, при которой энергия теплового движения приближается к величине энергетического порога , ограничивающего течение процесса. В случае молекулярных превращений, то есть химических реакций , такое повышение обычно составляет сотни кельвинов, в случае же ядерных реакций - это минимум 10 7 К из-за очень большой высоты кулоновских барьеров сталкивающихся ядер. Тепловое возбуждение ядерных реакций осуществлено на практике только при синтезе самых лёгких ядер, у которых кулоновские барьеры минимальны (термоядерный синтез).

Возбуждение присоединяющимися частицами не требует большой кинетической энергии, и, следовательно, не зависит от температуры среды, поскольку происходит за счет неиспользованных связей, присущих частицам сил притяжения. Но зато для возбуждения реакций необходимы сами частицы. И если опять иметь в виду не отдельный акт реакции, а получение энергии в макроскопических масштабах, то это возможно лишь при возникновении цепной реакции. Последняя же возникает, когда возбуждающие реакцию частицы снова появляются как продукты экзоэнергетической реакции.

Цепные реакции

Цепные реакции широко распространены среди химических реакций, где роль частиц с неиспользованными связями выполняют свободные атомы или радикалы . Механизм цепной реакции при ядерных превращениях могут обеспечить нейтроны , не имеющие кулоновского барьера и возбуждающие ядра при поглощении. Появление в среде необходимой частицы вызывает цепь следующих, одна за другой реакций, которая продолжается до обрыва цепи вследствие потери частицы-носителя реакции. Основных причин потерь две: поглощение частицы без испускания вторичной и уход частицы за пределы объёма вещества, поддерживающего цепной процесс. Если в каждом акте реакции появляется только одна частица-носитель, то цепная реакция называется неразветвлённой . Неразветвлённая цепная реакция не может привести к энерговыделению в больших масштабах.

Если в каждом акте реакции или в некоторых звеньях цепи появляется более одной частицы, то возникает разветвленная цепная реакция, ибо одна из вторичных частиц продолжает начатую цепь, а другие дают новые цепи, которые снова ветвятся. Правда, с процессом ветвления конкурируют процессы, приводящие к обрывам цепей, и складывающаяся ситуация порождает специфические для разветвленных цепных реакций предельные или критические явления. Если число обрывов цепей больше, чем число появляющихся новых цепей, то самоподдерживающаяся цепная реакция (СЦР) оказывается невозможной. Даже если её возбудить искусственно, введя в среду какое-то количество необходимых частиц, то, поскольку число цепей в этом случае может только убывать, начавшийся процесс быстро затухает. Если же число образующихся новых цепей превосходит число обрывов, цепная реакция быстро распространяется по всему объёму вещества при появлении хотя бы одной начальной частицы.

Область состояний вещества с развитием цепной самоподдерживающейся реакции отделена от области, где цепная реакция вообще невозможна, критическим состоянием . Критическое состояние характеризуется равенством между числом новых цепей и числом обрывов.

Достижение критического состояния определяется рядом факторов. Деление тяжелого ядра возбуждается одним нейтроном, а в результате акта деления появляется более одного нейтрона (например, для 235 U число нейтронов, родившихся в одном акте деления, в среднем равно 2,5). Следовательно, процесс деления может породить разветвленную цепную реакцию, носителями которой будут служить нейтроны. Если скорость потерь нейтронов (захватов без деления, вылетов из реакционного объёма и т. д.) компенсирует скорость размножения нейтронов таким образом, что эффективный коэффициент размножения нейтронов в точности равен единице, то цепная реакция идёт в стационарном режиме. Введение отрицательных обратных связей между эффективным коэффициентом размножения и скоростью энерговыделения позволяет осуществить управляемую цепную реакцию, которая используется, например, в ядерной энергетике . Если коэффициент размножения больше единицы, цепная реакция развивается экспоненциально; неуправляемая цепная реакция деления используется в ядерном оружии .

См. также

  • Цепная химическая реакция

Литература

  • Климов А. Н. Ядерная физика и ядерные реакторы. - М. Атомиздат, .
  • Левин В. Е. Ядерная физика и ядерные реакторы / 4-е изд. - М.: Атомиздат, .
  • Петунин В. П. Теплоэнергетика ядерных установок. - М.: Атомиздат, .

Wikimedia Foundation . 2010 .

Смотреть что такое "Цепная ядерная реакция" в других словарях:

    Chain nuclear reaction последовательность ядерных реакций, возбуждаемых частицами (например, нейтронами), рождающимися в каждом акте реакции. В зависимости от среднего числа реакций, следующих за одной предыдущей меньшего, равного или… … Термины атомной энергетики

    цепная ядерная реакция - Последовательность ядерных реакций, возбуждаемых частицами (например, нейтронами), рождающимися в каждом акте реакции. В зависимости от среднего числа реакций, следующих за одной предыдущей меньшего, равного или превосходящего единицу реакция… …

    цепная ядерная реакция - grandininė branduolinė reakcija statusas T sritis fizika atitikmenys: angl. nuclear chain reaction vok. Kettenkernreaktion, f rus. цепная ядерная реакция, f pranc. réaction en chaîne nucléaire, f; réaction nucléaire en chaîne, f … Fizikos terminų žodynas

    Реакция деления атомных ядер тяжёлых элементов под действием нейтронов, в каждом акте к рой число нейтронов возрастает, так что может возникнуть самоподдерживающийся процесс деления. Напр., при делении одного ядра изотопа урана 235U под действием … Большой энциклопедический политехнический словарь

    Цепная ядерная реакция - реакция деления атомных ядер под действием нейтронов, в каждом акте которой испускается не менее одного нейтрона, что обеспечивает поддержание реакции. Используется как источник энергии в ядерных зарядах (взрывная Ц. я. р.) и ядерных реакторах… … Словарь военных терминов

    цепная ядерная реакция деления на нейтронах - — [А.С.Гольдберг. Англо русский энергетический словарь. 2006 г.] Тематики энергетика в целом EN divergent reaction … Справочник технического переводчика

    Самоподдерживающаяся цепная ядерная реакция - 7. Самоподдерживающаяся цепная ядерная реакция СЦР Цепная ядерная реакция, характеризующаяся значением эффективного коэффициента размножения, превышающим или равным единице

В которых частицы, вызывающие их, образуются и как продукты этих реакций. Такой реакцией является деление урана и некоторых транс-урановых элементов (например, 23 9 Pu ) под действием нейтронов. Впервые она была осуществлена Э. Ферми в 1942 г. После открытия деления ядер У. Зинн, Л. Силард и Г. Н. Флеров показали, что при делении ядра урана U вылетает больше одного нейтрона: n + U А + В + v . Здесь А и В — осколки деления с массовыми числами А от 90 до 150, v — число вторичных нейтронов.

Коэффициент размножения нейтронов . Для течения цепной реакции необходимо, чтобы сред-нее число освобожденных нейтронов в данной массе урана не уменьшалось со временем, или что-бы коэффициент размножения нейтронов k был больше или равен единице.

Коэффициентом размножения нейтронов называют отношение числа нейтронов в каком-либо поколении к числу нейтронов предшествующего поколения. Под сменой поколений понимают деление ядер, при котором поглощаются нейтроны старого поколения и рождаются новые нейтроны.

Если k ≥ 1 , то число нейтронов увеличивается с течением времени или остается постоянным, и цепная реакция идет. При k > 1 число нейтронов убывает, и цепная реакция невозможна.

В силу ряда причин из всех ядер, встречающихся в природе, для осуществления цепной ядер-ной реакции пригодны лишь ядра изотопа . Коэффициент размножения определяется: 1) захватом медленных нейтронов ядрами последующим делением и захватом быстрых нейтронов ядрами и , также с последующим делением; 2) захватом нейтронов без деления ядрами урана; 3) захватом нейтронов продуктами деления, замедлителем и конструктивными элементами установки; 4) вылетом нейтронов из делящегося вещества наружу.

Лишь первый процесс сопровождается увеличением числа нейтронов. Для стационарного тече-ния реакции k должно быть равно 1. Уже при k = 1,01 почти мгновенно произойдет взрыв.

Образование плутония . В результате захвата изотопом урана нейтрона образуется радиоактивный изотоп с периодом полураспада 23 мин. При распаде возникает первый трансура-новый элемент нептуний :

.

β-радиоактивный нептуний (с периодом полураспада около двух дней), испуская электрон, превращается в следующий трансурановый элемент — плутоний :

Период полураспада плутония 24000 лет, и его важнейшим свойством является способность делиться под влиянием медленных нейтронов так же, как и изотоп С помощью плутония может быть осуществлена цепная реакция с выделением огромного количества энергии.

Цепная реакция сопровождается выделением огромной энергии; при делении каждого ядра выделяется 200 МэВ. При делении 1 ядер урана выделяется такая же энергия, как при сжига-нии 3 угля или 2,5 т нефти.

Рассмотрим механизм цепной реакции деления. При делении тяжелых ядер под действием нейтронов возникают новые нейтроны. Например, при каждом делении ядра урана 92 U 235 в среднем возникает 2.4 нейтрона. Часть этих нейтронов снова может вызвать деление ядер. Такой лавинообразный процесс называется цепной реакцией .
Цепная реакция деления идет в среде, в которой происходит процесс размножения нейтронов. Такая среда называется активной зоной . Важнейшей физической величиной, характеризующей интенсивность размножения нейтронов, является коэффициент размножения нейтронов в среде k ∞ . Коэффициент размножения равен отношению количества нейтронов в одном поколении к их количеству в предыдущем поколении. Индекс ∞ указывает, что речь идет об идеальной среде бесконечных размеров. Аналогично величине k ∞ определяется коэффициент размножения нейтронов в физической системе k. Коэффициент k является характеристикой конкретной установки.
В делящейся среде конечных размеров часть нейтронов будет уходить из активной зоны наружу. Поэтому коэффициент k зависит еще от вероятности Р для нейтрона не уйти из активной зоны. По определению

k = k ∞ P. (1)

Величина Р зависит от состава активной зоны, ее размеров, формы, а также от того, в какой степени окружающее активную зону вещество отражает нейтроны.
С возможностью ухода нейтронов за пределы активной зоны связаны важные понятия критической массы и критических размеров. Критическим размером называется размер активной зоны, при котором k = 1. Критической массой называется масса активной зоны критических размеров. Очевидно, что при массе ниже критической цепная реакция не идет, даже если > 1. Наоборот, заметное превышение массы над критической ведет к неуправляемой реакции - взрыву.
Если в первом поколении имеется N нейтронов, то в n-м поколении их будет Nk n . Поэтому при k = 1 цепная реакция идет стационарно, при k < 1 реакция гаснет, а при k > 1 интенсивность реакции нарастает. При k = 1 режим реакции называется критическим , при k > 1 – надкритическим и при k < 1 – подкритическим .
Время жизни одного поколения нейтронов сильно зависит от свойств среды и имеет порядок от 10 –4 до 10 –8 с. Из-за малости этого времени для осуществления управляемой цепной реакции надо с большой точностью поддерживать равенство k = 1, так как, скажем, при k = 1.01 система почти мгновенно взорвется. Посмотрим, какими факторами определяются коэффициенты k ∞ и k.
Первой величиной, определяющей k ∞ (или k), является среднее число нейтронов, испускаемых в одном акте деления. Число зависит от вида горючего и от энергии падающего нейтрона. В табл. 1 приведены значения основных изотопов ядерной энергетики как для тепловых, так и для быстрых (Е = 1 МэВ) нейтронов.

Энергетический спектр нейтронов деления для изотопа 235 U приведен на рис. 1. Такого рода спектры сходны для всех делящихся изотопов: имеется сильный разброс по энергиям, причем основная масса нейтронов имеет энергии в области 1–3 МэВ. Возникшие при делении нейтроны замедляются, диффундируют на некоторое расстояние и поглощаются либо с делением, либо без него. В зависимости от свойств среды нейтроны успевают до поглощения замедлиться до различных энергий. При наличии хорошего замедлителя основная масса нейтронов успевает замедлиться до тепловых энергий порядка 0.025 эВ. В этом случае цепная реакция называется медленной , или, что то же самое, тепловой . При отсутствии специального замедлителя нейтроны успевают замедлиться лишь до энергий 0.1–0.4 МэВ, так как все делящиеся изотопы – тяжелые и поэтому замедляют плохо. Соответствующие цепные реакции называются быстрыми (подчеркнем, что эпитеты “быстрый” и “медленный” характеризуют скорость нейтронов, а не скорость реакции). Цепные реакции, в которых нейтроны замедляются до энергий от десятков до одного кэВ, называются промежуточными .
При столкновении нейтрона с тяжелым ядром всегда возможен радиационный захват нейтрона (n,γ). Этот процесс будет конкурировать с делением и тем самым уменьшать коэффициент размножения. Отсюда вытекает, что второй физической величиной, влияющей на коэффициенты k ∞ , k, является вероятность деления при захвате нейтрона ядром делящегося изотопа. Эта вероятность для моноэнергетических нейтронов, очевидно, равна

, (2)

где nf , nγ – соответственно сечения деления и радиационного захвата. Для одновременного учета как числа нейтронов на акт деления, так и вероятности радиационного захвата вводится коэффициент η , равный среднему числу вторичных нейтронов на один захват нейтрона делящимся ядром.

, (3)

величина η зависит от вида горючего и от энергии нейтронов. Значения η для важнейших изотопов для тепловых и быстрых нейтронов приведены в той же табл. 1. Величина η является важнейшей характеристикой ядер горючего. Цепная реакция может идти только при η > 1. Качество горючего тем выше, чем больше значение η .

Таблица 1. Значения ν , η для делящихся изотопов

Ядро 92 U 233 92 U 235 94 Pu 239
Тепловые нейтроны
(Е = 0.025 эВ)
ν 2.52 2.47 2.91
η 2.28 2.07 2.09
Быстрые нейтроны
(E = 1 МэВ)
ν 2.7 2.65 3.0
η 2.45 2.3 2.7

Качество ядерного горючего определяется его доступностью и коэффициентом η . В природе встречаются только, три изотопа, которые могут служить ядерным топливом или сырьем для его получения. Это изотоп тория 232 Th и изотопы урана 238 U и 235 U. Из них первые два цепной реакции не дают, но могут быть переработаны в изотопы, на которых реакция идет. Изотоп 235 U сам дает цепную реакцию. В земной коре тория в несколько раз больше, чем урана. Природный торий практически состоит только из одного изотопа 232 Th. Природный уран в основном состоит из изотопа 238 U и только на 0.7% из изотопа 235 U.
На практике крайне важен вопрос об осуществимости цепной реакции на естественной смеси изотопов урана, в которой на одно ядро 235 U приходится 140 ядер 238 U. Покажем, что на естественной смеси медленная реакция возможна, а быстрая – нет. Для рассмотрения цепной реакции на естественной смеси удобно ввести новую величину – среднее сечение поглощения нейтрона, отнесенное к одному ядру изотопа 235 U. По определению

Для тепловых нейтронов = 2.47, = 580 барн, = 112 барн, = 2.8 барн (обратите внимание на малость последнего сечения). Подставив эти цифры в (5), мы получим, что для медленных нейтронов в естественной смеси

Это означает, что 100 тепловых нейтронов, поглотившись в естественной смеси, создадут 132 новых нейтрона. Отсюда прямо следует, что цепная реакция на медленных нейтронах в принципе возможна на естественном уране. В принципе, потому что для реального осуществления цепной реакции надо уметь замедлять нейтроны с малыми потерями.
Для быстрых нейтронов ν = 2.65, 2 барн, 0.1 барн. Если учитывать деление только на изотопе 235 U, получим

235 (быстр.) 0.3. (7)

Но надо еще учесть, что быстрые нейтроны с энергиями больше 1 МэВ могут с заметной относительной интенсивностью делить и ядра изотопа 238 U, которого в естественной смеси очень много. Для деления на 238 U коэффициент равен примерно 2.5. В спектре деления примерно 60% нейтронов имеют энергии выше эффективного порога 1.4 МэВ деления на 238 U. Но из этих 60% только один нейтрон из 5 успевает произвести деление, не замедлившись до энергии ниже пороговой за счет упругого и особенно неупругого рассеяния. Отсюда для коэффициента 238 (быстр.) получается оценка

Таким образом, на быстрых нейтронах цепная реакция в естественной смеси (235 U + 238 U) идти не может. Экспериментально установлено, что для чистого металлического урана коэффициент размножения достигает значения единицы при обогащении 5.56%. Практически оказывается, что реакцию на быстрых нейтронах можно поддерживать лишь в обогащенной смеси, содержащей не меньше 15% изотопа 235 U.
Естественную смесь изотопов урана можно обогащать изотопом 235 U. Обогащение является сложным и дорогостоящим процессом из-за того, что химические свойства обоих изотопов почти одинаковы. Приходится пользоваться небольшими различиями в скоростях химических реакций, диффузии и др., возникающими вследствие различия масс изотопов. Цепную реакцию на 235 U практически всегда осуществляют в среде с большим содержанием 238 U. Часто используется естественная смесь изотопов, для которой η = 1.32 в области тепловых нейтронов, так как 238 U также полезен. Изотоп 238 U делится нейтронами с энергией выше 1 МэВ. Это деление приводит к небольшому дополнительному размножению нейтронов.
Сравним цепные реакции деления на тепловых и быстрых нейтронах.
У тепловых нейтронов сечения захвата велики и сильно меняются при переходе от одного ядра к другому. На ядрах некоторых элементов (например, на кадмии) эти сечения в сотни и более раз превосходят сечения на 235 U. Поэтому к активной зоне установок на тепловых нейтронах предъявляются требования высокой чистоты по отношению к некоторым примесям.
Для быстрых нейтронов все сечения захвата малы и не так уж сильно отличаются друг от друга, так что проблемы высокой чистоты материалов не возникает. Другим преимуществом быстрых реакций является более высокий коэффициент воспроизводства.
Важное отличительное свойство тепловых реакций состоит в том, что в активной зоне топливо значительно сильнее разбавлено, т. е. на одно ядро топлива приходится значительно больше не участвующих в делении ядер, чем в быстрой реакции. Например, в тепловой реакции на естественном уране на ядро топлива 235 U приходится 140 ядер сырья 238 U, а в быстрой реакции на ядро 235 U может приходиться не более пяти-шести ядер 238 U. Разбавленность топлива в тепловой реакции приводит к тому, что одна и та же энергия в тепловой реакции выделяется в значительно большем объеме вещества, чем в быстрой. Тем самым из активной зоны тепловой реакции легче отводить тепло, что позволяет осуществлять эту реакцию с большей интенсивностью, чем быструю.
Время жизни одного поколения нейтронов для быстрой реакции на несколько порядков меньше, чем для тепловой. Поэтому скорость протекания быстрой реакции может заметно измениться через очень короткое время после изменения физических условий в активной зоне. При нормальной работе реактора этот эффект несуществен, поскольку в этом случае режим работы определяется временами жизни запаздывающих , а не мгновенных нейтронов.
В однородной среде, состоящей только из делящихся изотопов одного вида, коэффициент размножения был бы равен η. Однако в реальных ситуациях, кроме делящихся ядер, всегда присутствуют другие, неделящиеся. Эти посторонние ядра будут захватывать нейтроны и тем самым влиять на коэффициент размножения. Отсюда следует, что третьей величиной, определяющей коэффициенты k ∞ , k, является вероятность того, что нейтрон не будет захвачен одним из неделящихся ядер. В реальных установках “посторонний” захват идет на ядрах замедлителя, на ядрах различных конструктивных элементов, а также на ядрах продуктов деления и продуктов захвата.
Для осуществления цепной реакции на медленных нейтронах в активную зону вводят специальные вещества – замедлители, которые превращают нейтроны деления в тепловые. На практике цепная реакция на медленных нейтронах осуществляется на естественном или слегка обогащенном изотопом 235 U уране. Присутствие большого количества изотопа 238 U в активной зоне усложняет процесс замедления и делает необходимым предъявление высоких требований к качеству замедлителя. Жизнь одного поколения нейтронов в активной зоне с замедлителем приближенно можно разбить на две стадии: замедление до тепловых энергий и диффузия с. тепловыми скоростями до поглощения. Для того чтобы основная часть нейтронов успела замедлиться без поглощения, необходимо выполнение условия

где σ упр, σ захв – усредненные по энергиям сечения соответственно упругого рассеяния и захвата, а n – число столкновений нейтрона с ядрами замедлителя, необходимое для достижения тепловой энергии. Число n быстро растет с ростом массового числа замедлителя. Для урана 238 U число n имеет порядок нескольких тысяч. А отношение σ упр /σ захв для этого изотопа даже в сравнительно благоприятной области энергий быстрых нейтронов не превышает 50. Особенно же “опасна” в отношении захвата нейтронов так называемая резонансная область от 1 кэВ до 1 эВ. В этой области полное сечение взаимодействия нейтрона с ядрами 238 U имеет большое число интенсивных резонансов (рис. 2). При низких энергиях радиационные ширины превышают нейтронные. Поэтому в области резонансов отношение σ упр /σ захв становится даже меньше единицы. Это означает, что при попадании в область одного из резонансов нейтрон поглощается практически со стопроцентной вероятностью. А так как замедление на таком тяжелей ядре, как уран, идет “мелкими шагами”, то при прохождении через резонансную область замедляющийся нейтрон обязательно “наткнется” на один из резонансов и поглотится. Отсюда следует, что на естественном уране без посторонних примесей цепную реакцию осуществить нельзя: на быстрых нейтронах реакция не идет из-за малости коэффициента η, а медленные нейтроны не могут образоваться, Для того чтобы избежать резонансного захвата нейтрона, надо использовать для замедления очень легкие ядра, на которых замедление идет “крупными шагами”, что резко увеличивает вероятность благополучного “проскакивания” нейтрона через резонансную область энергий. Наилучшими элементами-замедлителями являются водород, дейтерий, бериллий, углерод. Поэтому используемые на практике замедлители в основном сводятся к тяжелой воде, бериллию, окиси бериллия, графиту, а также обычной воде, которая замедляет нейтроны не хуже тяжелой воды, но поглощает их в гораздо большем количестве. Замедлитель должен быть хорошо очищен. Заметим, что для осуществления медленной реакции замедлителя должно быть в десятки, а то и в сотни раз больше, чем урана, чтобы предотвратить резонансные столкновения нейтронов с ядрами 238 U.

Замедляющие свойства активной среды приближенно могут быть описаны тремя величинами: вероятностью нейтрону избежать поглощения замедлителем во время замедления, вероятностью р избежать резонансного захвата ядрами 238 U и вероятностью f тепловому нейтрону поглотиться ядром горючего, а не замедлителя. Величина f называется обычно коэффициентом теплового использования. Точный расчет этих величин сложен. Обычно для их вычисления пользуются приближенными полуэмпирическими формулами.

Величины p и f зависят не только от относительного количества замедлителя, но и от геометрии его размещения в активной зоне. Активная зона, состоящая из однородной смеси урана и замедлителя, называется гомогенной, а система их чередующихся блоков урана и замедлителя называется гетерогенной (рис. 4). Качественно гетерогенная система отличается тем, что в ней образовавшийся в уране быстрый нейтрон успевает уйти в замедлитель, не достигнув резонансных энергий. Дальнейшее замедление идет уже в чистом замедлителе. Это повышает вероятность p избежать резонансного захвата

p гет > p гом.

С другой стороны, наоборот, став в замедлителе тепловым, нейтрон должен для участия в цепной реакции продиффундировать, не поглотившись в чистом замедлителе, до его границы. Поэтому коэффициент теплового использования f в гетерогенной среде ниже, чем в гомогенной:

f гет < f гом.

Для оценки коэффициента размножения k ∞ теплового реактора используется приближенная формула четырех сомножителей

k ∞ = η pf ε . (11)

Первые три сомножителя мы уже рассматривали ранее. Величина ε называется коэффициентом размножения на быстрых нейтронах . Этот коэффициент вводится для того, чтобы учесть, что часть быстрых нейтронов может произвести деление, не успев замедлиться. По своему смыслу коэффициент ε всегда превышает единицу. Но это превышение обычно невелико. Типичным для тепловых реакций является значение ε = 1.03. Для быстрых реакций формула четырех сомножителей неприменима, так как каждый коэффициент зависит от энергии и разброс по энергиям при быстрых реакциях очень велик.
Поскольку величина η определяется видом топлива, а величина ε для медленных реакций почти не отличается от единицы, то качество конкретной активной среды определяется произведением pf. Так, преимущество гетерогенной среды перед гомогенной количественно проявляется в том, что, например, в системе, в которой на одно ядро естественного урана приходится 215 ядер графита, произведение pf равно 0,823 для гетерогенной среды и 0,595 для гомогенной. А так как для естественной смеси η = 1,34, то мы и получим, что для гетерогенной среды k ∞ > 1, а для гомогенной k ∞ < 1.
Для практического осуществления стационарно текущей цепной реакции надо уметь этой реакцией управлять. Это управление существенно упрощается благодаря вылету запаздывающих нейтронов при делении. Подавляющее большинство нейтронов вылетает из ядра практически мгновенно (т. е. за время, на много порядков меньшее времени жизни поколения нейтронов в активной зоне), но несколько десятых процента нейтронов являются запаздывающими и вылетают из ядер-осколков через довольно большой промежуток времени – от долей секунды до нескольких и даже десятков секунд. Качественно влияние запаздывающих нейтронов можно пояснить так. Пусть коэффициент размножения мгновенно возрос от подкритического значения до такого надкритического, что k < 1 при отсутствии запаздывающих нейтронов. Тогда, очевидно, цепная реакция начнется не сразу, а лишь после вылета запаздывающих нейтронов. Тем самым процесс течения реакции будет регулируемым, если время срабатывания регулирующих устройств будет меньше сравнительно большого времени задержки запаздывающих нейтронов, а не очень малого времени развития цепной реакции. Доля запаздывающих нейтронов в ядерных горючих колеблется от 0.2 до 0.7%. Среднее время жизни запаздывающих нейтронов составляет приблизительно 10 с. При небольшой степени надкритичности скорость нарастания интенсивности цепной реакции определяется только запаздывающими нейтронами.
Захват нейтронов не участвующими в цепной реакции ядрами снижает интенсивность реакции, но может быть полезным в отношении образования новых делящихся изотопов. Так, при поглощении нейтронов изотопов урана 238 U и тория 232 Th образуются (через два последовательных β-распада) изотопы плутония 239 Pu и урана 233 U, являющиеся ядерным горючим:

, (12)
. (13)

Эти две реакции открывают реальную возможность воспроизводства ядерного горючего в процессе течения цепной реакции. В идеальном случае, т. е. при отсутствии ненужных потерь нейтронов, на воспроизводство может идти в среднем – 1 нейтронов на каждый акт поглощения нейтрона ядром горючего.

Ядерные (атомные) реакторы

Реактором называется устройство, в котором поддерживается управляемая цепная реакция деления. При работе реактора происходит выделение тепла за счет экзотермичности реакции деления. Основной характеристикой реактора является его мощность – количество тепловой энергии, выделяющейся в единицу времени. Мощность реактора измеряете в мегаваттах (10 6 Вт). Мощность в 1 МВт соответствует цепной реакции, в которой происходит 3·10 16 актов деления в секунду. Имеется большое количество разных видов реакторов. Одна из типичных схем теплового реактора изображена на рис. 5.
Основной частью реактора является активная зона, в которой протекает реакция и тем самым выделяется энергия. В тепловых реакторах и в реакторах на промежуточных нейтронах активная зона состоит из горючего, как правило, смешанного с неделящимся изотопом (обычно 238 U) и из замедлителя. В активной зоне реакторов на быстрых нейтронах замедлителя нет.
Объем активной зоны варьируется от десятых долей литра в некоторых реакторах на быстрых нейтронах до десятков кубометров в больших тепловых реакторах. Для уменьшения утечки нейтронов активной зоне придают сферическую или близкую к сферической форму (например, цилиндр с высотой, примерно равной диаметру, или куб).
В зависимости от относительного расположения горючего и замедлителя различают гомогенные и гетерогенные реакторы. Примером гомогенной активной зоны может служить раствор уранил-сульфатной соли иU 2 SO 4 в обычной или тяжелой воде. Более распространены гетерогенные реакторы. В гетерогенных реакторах активная зона состоит из замедлителя, в который помещаются кассеты, содержащие горючее. Поскольку энергия выделяется именно в этих кассетах, их называют тепловыделяющими элементами или сокращенно твэлами . Активная зона с отражателем часто заключается в стальной кожух.

  • Роль запаздывающих нейтронов в управлении ядерным реактором

Цепная реакция

Цепная реакция - химическая и ядерная реакция, в которой появление активной частицы (свободного радикала или атома в химическом, нейтрона в ядерном процессе) вызывает большое число (цепь) последовательных превращений неактивных молекул или ядер. Свободные радикалы и многие атомы, в отличие от молекул, обладают свободными ненасыщенными валентностями (непарным электроном), что приводит к их взаимодействию с исходными молекулами. При столкновении свободного радикала (R ) с молекулой происходит разрыв одной из валентных связей последней и, таким образом, в результате реакции образуется новый свободный радикал, который, в свою очередь, реагирует с другой молекулой - происходит цепная реакция.

К цепным реакциям в химии относятся процессы окисления (горение , взрыв), крекинга , полимеризации и другие, широко применяющиеся в химической и нефтяной промышленности.


Wikimedia Foundation . 2010 .

Смотреть что такое "Цепная реакция" в других словарях:

    ЦЕПНАЯ РЕАКЦИЯ, самоподдерживающийся процесс ядерного ДЕЛЕНИЯ, при котором одна реакция приводит к началу второй, вторая третьей и так далее. Для начала реакции необходимы критические условия, то есть масса материала, способного к расщеплению,… … Научно-технический энциклопедический словарь

    цепная реакция - Всякий биологический (или химико физический) процесс, составленный серией взаимосвязанных процессов, где продукт (или энергия) каждого этапа является участником следующего этапа, что приводит к поддержанию и (или) ускорению цепочки… … Справочник технического переводчика

    цепная реакция - 1) Реакция, вызывающая большое число превращений молекул исходного вещества. 2) Самоподдерживающаяся реакция деления атомных ядер тяжёлых элементов под действием нейтронов. 3) разг. О ряде поступков, состояний и т.п., при котором один или одно… … Словарь многих выражений

    Chain reaction цепная реакция. Всякий биологический (или химико физический) процесс, составленный серией взаимосвязанных процессов, где продукт (или энергия) каждого этапа является участником следующего этапа, что приводит к поддержанию и (или)… … Молекулярная биология и генетика. Толковый словарь.

    цепная реакция - grandininė reakcija statusas T sritis chemija apibrėžtis Cheminė ar branduolinė reakcija, kurios aktyvusis centras sukelia ilgą kitimų grandinę. atitikmenys: angl. chain reaction rus. цепная реакция … Chemijos terminų aiškinamasis žodynas

    цепная реакция - grandininė reakcija statusas T sritis fizika atitikmenys: angl. chain reaction vok. Kettenkernreaktion, f; Kettenreaktion, f rus. цепная реакция, f pranc. réaction en chaîne, f … Fizikos terminų žodynas

    Разг. О непрекращающемся, бесконтрольном процессе вовлечения кого л., чего л. во что л. БМС 1998, 489; БТС, 1462 … Большой словарь русских поговорок

    Цепная реакция научное понятие. А также «Цепная реакция» название нескольких художественных фильмов: «Цепная реакция» фильм СССР 1962 года. «Цепная реакция» французская криминальная кинокомедия 1963 года. «Цепная… … Википедия

    Цепная реакция научное понятие. А также «Цепная реакция» название нескольких художественных фильмов: «Цепная реакция» фильм СССР 1962 года. «Цепная реакция» французская криминальная кинокомедия 1963 года. «Цепная реакция» фильм Австралии… … Википедия

    Цепная реакция (фильм, 1963) У этого термина существуют и другие значения, см. Цепная реакция (значения). Цепная реакция Carambolages … Википедия

Книги

  • Цепная реакция , Элкелес Симона. Возраст 18+ 3 фишки: - Бестселлер The New York Times, Amazon - От автора мировых бестселлеров "Идеальная химия" и"Закон притяжения"-Для тех, кто верит, что любовь меняет все" Отличная…