Главная · Освещение · Газообразные вещества. Тела, вещества, частицы

Газообразные вещества. Тела, вещества, частицы

Притяжение и отталкивание частиц определяют их взаимное расположение в веществе. А от расположения частиц существенно зависят свойства веществ. Так, глядя на прозрачный очень твердый алмаз (бриллиант) и на мягкий черный графит (из него изготавливают стержни карандашей), мы не догадываемся, что оба вещества состоят из совершенно одинаковых атомов углерода. Просто в графите эти атомы расположены иначе, чем в алмазе.

Взаимодействие частиц вещества приводит к тому, что оно может находиться в трех состояниях: твердом , жидком и газообразном . Например, лед, вода, пар. В трех состояниях может находиться любое вещество, но для этого нужны определенные условия: давление, температура. Например, кислород в воздухе - газ, но при охлаждении ниже -193 °C он превращается в жидкость, а при температуре -219 °C кислород - твердое вещество. Железо при нормальном давлении и комнатной температуре находится в твердом состоянии. При температуре выше 1539 °C железо становится жидким, а при температуре выше 3050 °C - газообразным. Жидкая ртуть, используемая в медицинских термометрах, при охлаждении до температуры ниже -39 °C становится твердой. При температуре выше 357 °C ртуть превращается в пар (газ).

Превращая металлическое серебро в газ, его напыляют на стекло и получают «зеркальные» очки.

Какими свойствами обладают вещества в различных состояниях?

Начнем с газов, в которых поведение молекул напоминает движение пчел в рое. Однако пчелы в рое самостоятельно изменяют направление движения и практически не сталкиваются друг с другом. В то же время для молекул в газе такие столкновения не только неизбежны, но происходят практически непрерывно. В результате столкновений направления и значения скорости движения молекул изменяются.

Результатом такого движения и отсутствия взаимодействия частиц при движении является то, что газ не сохраняет ни объема, ни формы , а занимает весь предоставленный ему объем. Каждый из вас посчитает сущей нелепицей утверждения: «Воздух занимает половину объема комнаты» и «Я накачал воздух в две трети объема резинового шарика». Воздух, как и любой газ, занимает весь объем комнаты и весь объем шарика.

А какие свойства имеют жидкости? Проведем опыт.

Перельем воду из одной мензурки в мензурку другой формы. Форма жидкости изменилась , но объем остался тем же . Молекулы не разлетелись по всему объему, как это было бы в случае с газом. Значит, взаимное притяжение молекул жидкости существует, но оно не удерживает жестко соседние молекулы. Они колеблются и перескакивают из одного места в другое, чем и объясняется текучесть жидкостей.

Наиболее сильным является взаимодействие частиц в твердом теле. Оно не дает возможности частицам разойтись. Частицы лишь совершают хаотические колебательные движения около определенных положений. Поэтому твердые тела сохраняют и объем, и форму . Резиновый мяч будет сохранять форму шара и объем, куда бы его не поместили: в банку, на стол и т. д.

Газ (газообразное состояние) Газ – это агрегатное состояние вещества, характеризующееся очень слабыми связями между составляющими его частицами (молекулами, атомами или ионами), а также их большой подвижностью.

Особенности газов Легко сжимаются. Не имеют собственной формы и объема Любые газы смешиваются друг с другом в любых соотношениях.

Число Авогадро Значение NA = 6, 022…× 1023 называется числом Авогадро. Это универсальная постоянная для мельчайших частиц любого вещества.

Следствие из закона Авогадро 1 моль любого газа при н. у. (760 мм рт. ст. и 00 С) занимает объем 22, 4 л. Vm = 22. 4 л/моль – молярный объем газов

Важнейшие природные смеси газов Состав воздуха: φ(N 2) = 78%; φ(O 2) = 21%; φ(CO 2) = 0. 03 Природный газ – это смесь углеводородов.

Получение водорода. В промышленности: Крекинг и риформинг углеводородов в процессе переработки нефти: C 2 H 6 (t = 10000 С) → 2 C + 3 H 2 Из природного газа. CH 4 + O 2 + 2 H 2 O → 2 CO 2 +6 H 2 O

Водород H 2 В лаборатории: Действие разбавленных кислот на металлы. Для проведения такой реакции чаще всего используют цинк и разбавленную серную кислоту: Zn + 2 HCl → Zn. Cl 2 + H 2 Взаимодействие кальция с водой: Ca + 2 H 2 O → Ca(OH)2 + H 2 Гидролиз гидридов: Ca. H 2 + 2 H 2 O → Ca(OH)2 +2 H 2 Действие щелочей на цинк или алюминий: Zn + 2 Na. OH + 2 H 2 O Na 2 + H 2

Свойства водорода Самый лёгкий газ, он легче воздуха в 14, 5 раз. Водород обладает самой высокой теплопроводностью среди газообразных веществ. Его теплопроводность примерно в семь раз выше теплопроводности воздуха. Молекула водорода двухатомна - Н 2. При нормальных условиях - это газ без цвета, запаха и вкуса.

Кислород В промышленности: Из воздуха. Основным промышленным способом получения кислорода, является криогенная ректификация. В лаборатории: Из перманганата калия (марганцовки): 2 KMn. O 4 = K 2 Mn. O 4 + Mn. O 2 + О 2 ; 2 H 2 O 2 = 2 Н 2 О + О 2.

Свойства кислорода При нормальных условиях кислород - это газ без цвета, вкуса и запаха. 1 л его имеет массу 1, 429 г. Немного тяжелее воздуха. Слабо растворяется в воде и спирте Хорошо растворяется в расплавленном серебре. Является парамагнетиком.

Оксид углерода (IV) В лаборатории: Из мела, известняка или мрамора: Na 2 CO 3 + 2 HCl = 2 Na. Cl + CO 2 +H 2 O Сa. CO 3 + HCl = Ca. Cl 2 + CO 2 + H 2 O В природе: Фотосинтез в растениях: C 6 H 12 O 6 + 6 O 2 = 6 CO 2 + 6 H 2 O

Оксид углерода (IV) Оксид углерода (IV) (углекислый газ) – это бесцветный газ, без запаха, со слегка кисловатым вкусом. Тяжелее воздуха, растворим в воде, при сильном охлаждении кристаллизуется в виде белой снегообразной массы – «сухого льда» . При атмосферном давлении он не плавится, а испаряется, температура сублимации -78 °С.

Аммиак (н. у.) – это бесцветный газ с резким характерным запахом (запах нашатырного спирта). Аммиак почти вдвое легче воздуха, растворимость NH 3 в воде чрезвычайно велика. В лаборатории аммиак получают: Взаимодействием щелочей с солями аммония: NH 4 Cl + Na. OH = Na. Cl + H 2 O + NH 3 В промышленности: Взаимодействие водорода и азота: 3 H + N = 2 NH

Этилен В лаборатории: Дегидратация этилового спирта В промышленности: Крекинг нефтепродуктов: C 4 H 10 → C 2 H 6 + C 2 H 4 этан этен

Этилен - бесцветный газ, обладающий слабым сладковатым запахом и относительно высокой плотностью. Этилен горит светящимся пламенем; с воздухом и кислородом образует взрывоопасную смесь. В воде этилен практически нерастворим.

Получение, собирание и распознавание газов Название газа (формула) Водород (H 2) Кислород (O 2) Углекислый газ (CO 2) Аммиак (NH 3) Этилен (С 2 H 4) Физические Лабораторный Способ свойства способ собирания получения Способ Значение распознаван газообразног ия о вещества

Задачи Задача № 1. 13, 5 грамм цинка (Zn) взаимодействуют с соляной кислотой (HCl). Объемная доля выхода водорода (H 2) составляет 85 %. Вычислить объем водорода, который выделился? Задача № 2. Имеется газовая смесь, массовые доли газа в которой равны (%): метана – 65, водорода – 35. Определите объемные доли газов в этой смеси.

Задача № 1 1) Запишем уравнение реакции взаимодействия цинка (Zn) с соляной кислотой (HCl): Zn + 2 HCl = Zn. Cl 2 + H 2 2) n (Zn) = 13, 5 / 65 = 0, 2 (моль). 3) 1 моль Zn вытесняет 1 моль водорода (H 2), а 0, 2 моль Zn вытесняет х моль водорода (H 2). Получаем: V теор. (H 2) = 0, 2 ∙ 22, 4 = 4, 48 (л). 4) Вычислим объем водорода практический по формуле: V практ. (H 2) = 85 ⋅ 4, 48 / 100 = 3, 81 (л).

Задача № 2 Имеется газовая смесь, массовые доли газа в которой равны (%): метана – 65, водорода – 35. Определите объемные доли газов в этой смеси.

Окружающий мир – это разнообразие предметов и форм. Но все многообразие нашего мира можно условно разделить на три группы: тела, вещества и частицы. О том, как их отличить, и что характеризует каждое из этих понятий, речь пойдет на уроке окружающего мира в 3 классе.

Тела

С точки зрения науки, любой предмет – это тело. Все, что вас окружает, дома, в классе, на улице – это тела. Например, кружка, стол, телефон, камень, стул, мяч.

По происхождению тела могут быть:

  • естественными – созданными природой;
  • искусственными – созданными человеком;
  • живые ;
  • неживые .

Рис. 1. Многообразие тел

Тело характеризуется:

  • размером;
  • формой;
  • цветом
  • массой;
  • температурой.

Любое тело при делении превращается в новый предмет. Например, ручка – тело, но если ее разобрать, получится несколько деталей.

Вещества

Вещество – это то, из чего состоит тело. Предмет может состоять из нескольких веществ. Например, кувшин сделан из глины, шарф связан из шерсти, ложка – из металла.

ТОП-4 статьи которые читают вместе с этой

Рис. 2. Вещества

Вещества бывают трех состояний:

  • твердые – те, которые можно пощупать;
  • жидкие – например, вода;
  • газообразные – воздух.

Одно из удивительных свойств некоторых тел – это возможность переходить из одного состояния в другое под воздействием некоторых факторов. Например, вода при температуре ниже нуля принимает твердую форму льда, а при 100 градусах по Цельсию начинает кипеть и превращается в газообразную форму – пар.

В отличие от тела, вещества при делении не изменяются. Если кусочек сахара разделить еще на несколько частей, то каждый из них все так же будет сахаром. Или разлить воду по чашкам, она так и останется водой, а не станет новым веществом.

Частицы

Вещества состоят из еще меньших единиц. Они настолько маленькие, что их невозможно увидеть без микроскопа. Их называют частицы.

Частицы сохраняют свойства вещества. В качестве опыта можно размешать кусочек сахара в воде. От этого жидкость станет сладкой, но вещества мы не увидим, поскольку частицы сахара смешались с частицами воды.

Между частицами есть свободное пространство. Состояние вещества будет завесить от того, как плотно находятся в нем элементы. В твердых веществах промежутков между частицами почти нет, в жидких – имеется некоторое расстояние между элементами, а в газообразных – частицы свободно перемещаются, поскольку между ними большое расстояние.

Рис. 3. Частицы в разных телах

Что мы узнали?

Тема “Тела, вещества, частицы” по окружающему миру – это очень интересный предмет для обсуждений. Можно делать множество опытов, чтобы изучить их свойства. Тела – это сложные предметы, состоящие из одного или нескольких веществ. В свою очередь, в любом материале есть совокупность наименьших неделимых элементов – частиц.

На сегодняшний день известно о существовании более чем 3 миллионов различных веществ. И цифра эта с каждым годом растет, так как химиками-синтетиками и другими учеными постоянно производятся опыты по получению новых соединений, обладающих какими-либо полезными свойствами.

Часть веществ - это природные обитатели, формирующиеся естественным путем. Другая половина - искусственные и синтетические. Однако и в первом и во втором случае значительную часть составляют газообразные вещества, примеры и характеристики которых мы и рассмотрим в данной статье.

Агрегатные состояния веществ

С XVII века принято было считать, что все известные соединения способны существовать в трех агрегатных состояниях: твердые, жидкие, газообразные вещества. Однако тщательные исследования последних десятилетий в области астрономии, физики, химии, космической биологии и прочих наук доказали, что есть еще одна форма. Это плазма.

Что она собой представляет? Это частично или полностью И оказывается, таких веществ во Вселенной подавляющее большинство. Так, именно в состоянии плазмы находятся:

  • межзвездное вещество;
  • космическая материя;
  • высшие слои атмосферы;
  • туманности;
  • состав многих планет;
  • звезды.

Поэтому сегодня говорят, что существуют твердые, жидкие, газообразные вещества и плазма. Кстати, каждый газ можно искусственно перевести в такое состояние, если подвергнуть его ионизации, то есть заставить превратиться в ионы.

Газообразные вещества: примеры

Примеров рассматриваемых веществ можно привести массу. Ведь газы известны еще с XVII века, когда ван Гельмонт, естествоиспытатель, впервые получил углекислый газ и стал исследовать его свойства. Кстати, название этой группе соединений также дал он, так как, по его мнению, газы - это нечто неупорядоченное, хаотичное, связанное с духами и чем-то невидимым, но ощутимым. Такое имя прижилось и в России.

Можно классифицировать все газообразные вещества, примеры тогда привести будет легче. Ведь охватить все многообразие сложно.

По составу различают:

  • простые,
  • сложные молекулы.

К первой группе относятся те, что состоят из одинаковых атомов в любом их количестве. Пример: кислород - О 2 , озон - О 3 , водород - Н 2 , хлор - CL 2 , фтор - F 2 , азот - N 2 и прочие.

  • сероводород - H 2 S;
  • хлороводород - HCL;
  • метан - CH 4;
  • сернистый газ - SO 2 ;
  • бурый газ - NO 2 ;
  • фреон - CF 2 CL 2 ;
  • аммиак - NH 3 и прочие.

Классификация по природе веществ

Также можно классифицировать виды газообразных веществ по принадлежности к органическому и неорганическому миру. То есть по природе входящих в состав атомов. Органическими газами являются:

  • первые пять представителей (метан, этан, пропан, бутан, пентан). Общая формула C n H 2n+2 ;
  • этилен - С 2 Н 4 ;
  • ацетилен или этин - С 2 Н 2 ;
  • метиламин - CH 3 NH 2 и другие.

Еще одной классификацией, которой можно подвергнуть рассматриваемые соединения, является деление на основе входящих в состав частиц. Именно из атомов состоят не все газообразные вещества. Примеры структур, в которых присутствуют ионы, молекулы, фотоны, электроны, броуновские частицы, плазма, также относятся к соединениям в таком агрегатном состоянии.

Свойства газов

Характеристики веществ в рассматриваемом состоянии отличаются от таковых для твердых или жидких соединений. Все дело в том, что свойства газообразных веществ особенные. Частицы их легко и быстро подвижны, вещество в целом изотропное, то есть свойства не определяются направлением движения входящих в состав структур.

Можно обозначить самые главные физические свойства газообразных веществ, которые и будут отличать их от всех остальных форм существования материи.

  1. Это такие соединения, которые нельзя увидеть и проконтролировать, ощутить обычными человеческими способами. Чтобы понять свойства и идентифицировать тот или иной газ, опираются на четыре описывающих их все параметра: давление, температура, количество вещества (моль), объем.
  2. В отличие от жидкостей газы способны занимать все пространство без остатка, ограничиваясь лишь величиной сосуда или помещения.
  3. Все газы между собой легко смешиваются, при этом у этих соединений нет поверхности раздела.
  4. Существуют более легкие и тяжелые представители, поэтому под действием силы тяжести и времени, возможно увидеть их разделение.
  5. Диффузия - одно из важнейших свойств этих соединений. Способность проникать в другие вещества и насыщать их изнутри, совершая при этом совершенно неупорядоченные движения внутри своей структуры.
  6. Реальные газы электрический ток проводить не могут, однако если говорить о разреженных и ионизированный субстанциях, то проводимость резко возрастает.
  7. Теплоемкость и теплопроводность газов невысока и колеблется у разных видов.
  8. Вязкость возрастает с увеличением давления и температуры.
  9. Существует два варианта межфазового перехода: испарение - жидкость превращается в пар, сублимация - твердое вещество, минуя жидкое, становится газообразным.

Отличительная особенность паров от истинных газов в том, что первые при определенных условиях способны перейти в жидкость или твердую фазу, а вторые нет. Также следует заметить способность рассматриваемых соединений сопротивляться деформациям и быть текучими.

Подобные свойства газообразных веществ позволяют широко применять их в самых различных областях науки и техники, промышленности и народном хозяйстве. К тому же конкретные характеристики являются для каждого представителя строго индивидуальными. Мы же рассмотрели лишь общие для всех реальных структур особенности.

Сжимаемость

При разных температурах, а также под влиянием давления газы способны сжиматься, увеличивая свою концентрацию и снижая занимаемый объем. При повышенных температурах они расширяются, при низких - сжимаются.

Под действием давления также происходят изменения. Плотность газообразных веществ увеличивается и, при достижении критической точки, которая для каждого представителя своя, может наступить переход в другое агрегатное состояние.

Основные ученые, внесшие вклад в развитие учения о газах

Таких людей можно назвать множество, ведь изучение газов - процесс трудоемкий и исторически долгий. Остановимся на самых известных личностях, сумевших сделать наиболее значимые открытия.

  1. в 1811 году сделал открытие. Неважно, какие газы, главное, что при одинаковых условиях их в одном объеме их содержится равное количество по числу молекул. Существует рассчитанная величина, имеющая название по фамилии ученого. Она равна 6,03*10 23 молекул для 1 моль любого газа.
  2. Ферми - создал учение об идеальном квантовом газе.
  3. Гей-Люссак, Бойль-Мариотт - фамилии ученых, создавших основные кинетические уравнения для расчетов.
  4. Роберт Бойль.
  5. Джон Дальтон.
  6. Жак Шарль и многие другие ученые.

Строение газообразных веществ

Самая главная особенность в построении кристаллической решетки рассматриваемых веществ, это то, что в узлах ее либо атомы, либо молекулы, которые соединяются друг с другом слабыми ковалентными связями. Также присутствуют силы ван-дер-ваальсового взаимодействия, когда речь идет о ионах, электронах и других квантовых системах.

Поэтому основные типы строения решеток для газов, это:

  • атомная;
  • молекулярная.

Связи внутри легко рвутся, поэтому эти соединения не имеют постоянной формы, а заполняют весь пространственный объем. Это же объясняет отсутствие электропроводности и плохую теплопроводность. А вот теплоизоляция у газов хорошая, ведь, благодаря диффузии, они способны проникать в твердые тела и занимать свободные кластерные пространства внутри них. Воздух при этом не пропускается, тепло удерживается. На этом основано применение газов и твердых тел в совокупности в строительных целях.

Простые вещества среди газов

Какие по строению и структуре газы относятся к данной категории, мы уже оговаривали выше. Это те, что состоят из одинаковых атомов. Примеров можно привести много, ведь значительная часть неметаллов из всей периодической системы при обычных условиях существует именно в таком агрегатном состоянии. Например:

  • фосфор белый - одна из данного элемента;
  • азот;
  • кислород;
  • фтор;
  • хлор;
  • гелий;
  • неон;
  • аргон;
  • криптон;
  • ксенон.

Молекулы этих газов могут быть как одноатомными (благородные газы), так и многоатомными (озон - О 3). Тип связи - ковалентная неполярная, в большинстве случаев достаточно слабая, но не у всех. Кристаллическая решетка молекулярного типа, что позволяет этим веществам легко переходить из одного агрегатного состояния в другое. Так, например, йод при обычных условиях - темно-фиолетовые кристаллы с металлическим блеском. Однако при нагревании сублимируются в клубы ярко-фиолетового газа - I 2 .

К слову сказать, любое вещество, в том числе металлы, при определенных условиях могут существовать в газообразном состоянии.

Сложные соединения газообразной природы

Таких газов, конечно, большинство. Различные сочетания атомов в молекулах, объединенные ковалентными связями и ван-дер-ваальсовыми взаимодействиями, позволяют сформироваться сотням различных представителей рассматриваемого агрегатного состояния.

Примерами именно сложных веществ среди газов могут быть все соединения, состоящие из двух и более разных элементов. Сюда можно отнести:

  • пропан;
  • бутан;
  • ацетилен;
  • аммиак;
  • силан;
  • фосфин;
  • метан;
  • сероуглерод;
  • сернистый газ;
  • бурый газ;
  • фреон;
  • этилен и прочие.

Кристаллическая решетка молекулярного типа. Многие из представителей легко растворяются в воде, образуя соответствующие кислоты. Большая часть подобных соединений - важная часть химических синтезов, осуществляемых в промышленности.

Метан и его гомологи

Иногда общим понятием "газ" обозначают природное полезное ископаемое, которое представляет собой целую смесь газообразных продуктов преимущественно органической природы. Именно он содержит такие вещества, как:

  • метан;
  • этан;
  • пропан;
  • бутан;
  • этилен;
  • ацетилен;
  • пентан и некоторые другие.

В промышленности они являются очень важными, ведь именно пропан-бутановая смесь - это бытовой газ, на котором люди готовят пищу, который используется в качестве источника энергии и тепла.

Многие из них используются для синтеза спиртов, альдегидов, кислот и прочих органических веществ. Ежегодное потребление природного газа исчисляется триллионами кубометров, и это вполне оправданно.

Кислород и углекислый газ

Какие вещества газообразные можно назвать самыми широко распространенными и известными даже первоклассникам? Ответ очевиден - кислород и углекислый газ. Ведь это они являются непосредственными участниками газообмена, происходящего у всех живых существ на планете.

Известно, что именно благодаря кислороду возможна жизнь, так как без него способны существовать только некоторые виды анаэробных бактерий. А углекислый газ - необходимый продукт "питания" для всех растений, которые поглощают его с целью осуществления процесса фотосинтеза.

С химической точки зрения и кислород, и углекислый газ - важные вещества для проведения синтезов соединений. Первый является сильным окислителем, второй чаще восстановитель.

Галогены

Это такая группа соединений, в которых атомы - это частицы газообразного вещества, соединенные попарно между собой за счет ковалентной неполярной связи. Однако не все галогены - газы. Бром - это жидкость при обычных условиях, а йод - легко возгоняющееся твердое вещество. Фтор и хлор - ядовитые опасные для здоровья живых существ вещества, которые являются сильнейшими окислителями и используются в синтезах очень широко.

Газообразное состояние вещества

Полимеры бывают естественного (растительные и животные ткани) и искусственного (пластмассы, целлюлоза, стекловолокно и др.) происхождения.

Так же, как и в случае обычных молекул, система макромоле­кул. образующих полимер, стремится к наиболее вероятному состоянию - устойчивому равновесию, соответствующему ми­нимуму свободной энергии. Следовательно, в принципе поли­меры также должны иметь структуру в виде кристаллической решетки. Однако ввиду громоздкости и сложности макромолекул лишь в немногих случаях удалось получить совершенные макро- молекулярные кристаллы. В большинстве случаев полимеры сос­тоят из кристаллических и аморфных областей.

Жидкое состояние характерно тем, что потенциальная энергия притяжения молекул несколько превосходит по абсолютному значению их кинетическую энергию. Силы притяжения между молекулами в жидкости обеспечивает удержание молекул в объе­ме жидкости. Вместе с тем молекулы в жидкости не связаны меж­ду собой стационарными устойчивыми связями, как в кристаллах. Они плотно заполняют занимаемое жидкостью пространство, поэтому жидкости практически несжимаемы и обладают достаточно высокой плотностью. Группы молекул могут изменять свое взаимное положение, что обеспечивает текучесть жидкостей. Свойство жидкости сопротивляться течению называется вяз­костью. Жидкостям свойственна диффузия и броуновское движе­ние, однако в значительно меньшей степени, чем газам.

Объем, занимаемый жидкостью, ограничен поверхностью. Так как при заданном объеме минимальной поверхностью обладает шар, то жидкость в свободном состоянии (например, в невесо­мости) принимает форму шара.

Жидкости обладают некоторой структурой, которая, однако, выражена гораздо слабее, чем у твердых тел. Важнейшим свой­ством жидкостей является изотропия свойств. Простая идеальная модель жидкости пока не создана.

Существует промежуточное состояние между жидкостями и кристаллами, которое называется жидкокристаллическим. Особен­ностью жидких кристаллов с молекулярной точки зрения является вытянутая, веретенообразная форма их молекул, что приводит к анизотропии их свойств.

Выделяют два типа жидких кристаллов - нематики и смекти­ки. Смектики характерны наличием параллельных слоев молекул, отличающихся друг от друга упорядоченностью структуры. У нематиков упорядоченность обеспечивается ориентацией моле­кул. Анизотропия свойств жидких кристаллов обусловливает их важные оптические свойства. Жидкие кристаллы могут, напри­мер, быть прозрачными в одном направлении и непрозрачными в другом. Важно, что ориентацией молекул жидких кристаллов и их слоев легко можно управлять с помощью внешних воздействий (например, температуры, электрических и магнитных полей).

Газообразное состояние вещества возникает в том случае, когда


кинетическая энергия теплового движения молекул превосходит потенциальную энергию их связи. Молекулы при этом стремятся удалиться друг от друга. Газ не имеет структуры, занимает весь предоставленный ему объем, легко сжимаем; в газах легко проис­ходит диффузия.

Свойства веществ, находящихся в газообразном состоянии, объясняет кинетическая газовая теория. Основные ее постулаты состоят в следующем:

Все газы состоят из молекул;

Размеры молекул пренебрежимо малы по сравнению с рас­стояниями между ними;

Молекулы постоянно находятся в состоянии хаотического (броуновского) движения;

Между столкновениями молекулы сохраняют постоянную скорость движения; траектории между столкновениями - отрезки прямых линий;

Столкновение между молекулами и молекул со стенками сосуда являются идеально упругими, т.е. полная кинетическая энергия соударяющихся молекул остается неизменной.

Рассмотрим упрощенную модель газа, подчиняющегося приве­денным постулатам. Такой газ называется идеальным газом. Пусть идеальный газ в количестве N одинаковых молекул, каждая из которых имеет массу m , находится в сосуде кубической формы с длиной ребра l (рис. 5.14). Молекулы движутся хаотически; средняя скорость их движения <v >. Для упрощения разобьем все молекулы на три равные группы и предположим, что они движут­ся только в направлениях, перпендикулярных двум противопо­ложным стенкам сосуда (рис. 5.15).


Рис. 5.14.

Каждая из молекул газа, движущаяся со скоростью <v > при абсолютно упругом соударении со стенкой сосуда, изменит нап­равление движения на обратное, не изменив скорость. Импульс молекулы <р > = m <v > становится равным при этом - m <v >. Изменение импульса в каждом столкновении, очевидно, равно . Сила, действующая во время этого столкновения, равна F = -2m <v >/Δt . Полное изменение импульса при столкновении со стенками всех N /3молекул равно . Определим интервал времени Δt , в течение которого произойдут все N/3 столкновения: Д t = 2//< v >. Тогда среднее значение силы, действующей на любую стенку,

Давление р газа на стенку определим как отношение силы <F > к площади стенки l 2:

где V = l 3 – объем сосуда.

Таким образом, давление газа обратно пропорционально его объему (напомним, что эмпирически этот закон установили Бойль и Мариотт).

Перепишем выражение (5.4) в виде

Здесь - средняя кинетическая энергия молекул газа. она пропорциональна абсолютной температуре Т :

где k – постоянная Больцмана.

Подставив (5.6) в (5.5), получим

Удобно перейти от числа молекул N к числу молей n газа, напомним, что (N А – число Авогадро), и тогда

где R = kN A - - универсальная газовая постоянная.

Выражение (5.8) есть уравнение состояния классического идеального газа для п молей. Данное уравнение, записанное для произвольной массы m газа


где М - молярная масса газа, называется уравнением Клапей­рона-Менделеева (см. (5.3)).

Реальные газы подчиняются этому уравнению в ограниченных пределах. Дело в том, что уравнения (5.8) и (5.9) не учитывают межмолекулярное взаимодействие в реальных газах - силы Ван- дер-Ваальса.

Фазовые переходы . Вещество, в зависимости от условий, в ко­торых оно находится, может изменять агрегатное состояние, или, как говорят, переходить из одной фазы в другую. Такой переход называется фазовым переходом.

Как указывалось выше, важнейшим фактором, определяющим состояние вещества, является его температура Т , характеризу­ющая среднюю кинетическую энергию теплового движения моле­кул и давление р . Поэтому, состояния вещества и фазовые пере­ходы анализируют по диаграмме состояний, где по осям отклады­ваются значения Т и р , а каждая точка на координатной плоскос­ти определяет соответствующее этим параметрам состояние дан­ного вещества. Проанали­зируем типичную диаграм­му (рис. 5.16). Кривые ОА , АВ, АК разделяют состоя­ния вещества. При доста­точно низких температурах практически все вещества находятся в твердом кристаллическом состоянии.


На диаграмме выделены две характерные точки: А и К . Точка А называется тройной точкой; при соот­ветствующих температуре (Т т) и давлении (Р т) в ней находится в равновесии одновременно газ, жидкость и твердое тело.

Точка К обозначает критическое состояние. В этой точке (при Т кр и Р кр) исчезает разница между жидкостью и газом, т.е. пос­ледние имеют одинаковые физические свойства.

Кривая ОА является кривой сублимации (возгонки); при соответствующих давлении и температуре осуществляется переход газ - твердое тело (твердое тело - газ), минуя жидкое состояние.

При давлении Р т < Р < Р кр переход из газообразного в твердое состояние (и наоборот) может осуществляться только через жид­кую фазу.

Кривая АК соответствует испарению (конденсации). При соответствующих давлении и температуре осуществляется переход «жидкость – газ» (и обратно).

Кривая АВ является кривой перехода «жидкость - твердое тело» (плавления и кристаллизации). Данная кривая не имеет конца, так как всегда жидкое состояние отличается от крис­таллического по структуре.

Приведем для иллюстрации форму поверхностей состояний вещества в переменных р, V, Т (рис. 5.17), где V - объем вещества


Буквами Г, Ж, Т обозначены участки поверхностей, точки которых, соответствуют газообразному, жидкому или твердому состояниям, а участки поверхностей Т-Г, Ж-Т, Т-Ж - двухфаз­ным состояниям. Очевидно, если спроецировать линии раздела между фазами на координатную плоскость РТ, получим фазовую диаграмму (см. рис. 5.16).

Квантовая жидкость - гелий . При обычных температурах в макроскопических телах из-за выраженного хаотического тепло­вого движения квантовые эффекты неощутимы. Однако с умень­шением температуры эти эффекты могут выходить на первый план и проявляются макроскопически. Так, например, кристаллы характерны наличием тепловых колебаний ионов, находящихся в узлах кристаллической решетки. С уменьшением температуры амплитуда колебаний уменьшается, однако даже при приближе­нии к абсолютному нулю колебания, вопреки классическим представлениям, не прекращаются.

Объяснение этого эффекта следует из соотношения неопреде­ленностей. Уменьшение амплитуды колебаний означает умень­шение области локализации частицы, т. е. неопределенности ее координат. В соответствии с соотношением неопределенностей это приводит к увеличению неопределенности импульса. Таким образом, «остановка» частицы запрещена законами квантовой механики.

Этот сугубо квантовый эффект проявляется в существовании вещества, остающегося в жидком состоянии даже при температу­рах, близких к абсолютному нулю. Такой «квантовой» жидкостью является гелий. Энергии нулевых колебаний оказывается доста­точно, чтобы разрушить кристаллическую решетку. Однако при давлении порядка 2,5 МПа жидкий гелий все-таки кристал­лизуется.

Плазма. Сообщение атомам (молекулам) газа извне значитель­ной энергии приводит к ионизации, т. е. распаду атомов на ионы и на свободные электроны. Такое состояние вещества называется плазмой.

Ионизация возникает, например, при сильном нагреве газа, что приводит к значительному увеличению кинетической энергии атомов, при электрическом разряде в газе (ударная ионизация заряженными частицами), при воздействии на газ электромагнит­ного излучения (автоионизация). Плазма, получаемая при сверх­высоких температурах, называется высокотемпературной.

Поскольку ионы и электроны в плазме несут некомпенсированные электрические заряды, их взаимное влияние существенно. Между заряженными частицами плазмы существует не парное (как в газе), а коллективное взаимодействие. Благодаря этому плазма ведет себя как своеобразная упругая среда, в которой легко возбуждаются и распространяются различные колебания и волны

Плазма активно взаимодействует с электрическими и магнит­ными полями. Плазма - наиболее распространенное состояние вещества во Вселенной. Звезды состоят из высокотемпературной плазмы, холодные туманности - из низкотемпературной. Слабо ионизированная низкотемпературная плазма имеется в ионосфере Земли.

Литература к главе 5

1. Ахиезер А. И., Рекало Я. П. Элементарные частицы. - М.: Наука, 1986.

2. Азшлов А. Мир углерода. - М.: Химия, 1978.

3. Бронштейн М. П. Атомы и электроны. - М.: Наука, 1980.

4. Бениловский В. Д. Эти удивительные жидкие кристаллы. - М: Просвещение, 1987.

5. Власов Н. А. Антивещество. - М.: Атомиздат, 1966.

6. Кристи Р., Питти А. Строение вещества: введение в совре­менную физику. - М.: Наука, 1969.

7. Крейчи В. Мир глазами современной физики. - М.: Мкр, 1984.

8. Намбу Е. Кварки. - М.: Мир, 1984.

9. Окунь Л. Б. α, β, γ, …,: элементарное введение в физику элементарных частиц. - М.: Наука, 1985.

10. Петров Ю. И. Физика малых частиц. - М.: Наука, 1982.

11. И, Пурмалъ А. П. и др. Как превращаются вещества. - М.: Наука, 1984.

12. Розенталь И. М. Элементарные частицы и структура все­ленной. - М.: Наука, 1984.

13. Смородинский Я. А. Элементарные частицы. - М.: Знание, 1968.