Главная · Измерения · Корпускулярно-волновой дуализм – миф или реальность

Корпускулярно-волновой дуализм – миф или реальность

Введение

Почти одновременно были выдвинуты две теории света: корпускулярная теория Ньютона и волновая теория Гюйгенса.

Согласно корпускулярной теории, или теории истечения, выдвинутой Ньютоном в конце 17 века, светящиеся тела испускают мельчайшие частицы (корпускулы), которые летят прямолинейно по всем направления и, попадая в глаз, вызывают световое ощущение.

Согласно волновой теории светящееся тело вызывает заполняющей все мировое пространство особой среде – мировом эфире – упругие колебания, которые распространяются в эфире подобно звуковым волнам в воздухе.

Во времена Ньютона и Гюйгенса большинство ученых придерживалось корпускулярной теории Ньютона, которая достаточно удовлетворительно объясняла все известные к тому времени световые явления. Отражение света объяснялось аналогично отражению упругих тел при ударе о плоскость. Преломление света объяснялось действием на корпускулы больших сил притяжения со стороны более плотной среды. Под действием этих сил, проявляющихся, согласно теории Ньютона, при приближении к более плотной среде, световые корпускулы получали ускорение, направленные перпендикулярно к границе этой среды, вследствие чего они изменяли направление движения и одновременно увеличивали свою скорость. Аналогично объяснялись другие световые явления.

В дальнейшем появившиеся новые наблюдения не укладывались в рамки этой теории. В частности, несостоятельность этой теории обнаружилось, когда была измерена скорость распространения света в воде. Она оказалась не больше, а меньше, чем в воздухе.

В начале 19 века волновая теория Гюйгенса, не признанная современниками, была развита и усовершенствована Юнгом и Френелем и получила всеобщее признание. В 60–х годах прошлого столетия, после того как Максвелл разработал теорию электромагнитного поля, выяснилось, что свет представляет собой электромагнитные волны. Таким образом, волновая механистическая теория света была заменена волновой электромагнитной теорией. Световые волны (видимый спектр) занимают в шкале электромагнитных волн диапазон 0,4–0,7мкм. Волновая теория света Максвелла, трактующая излучение как непрерывный процесс, оказалась не в состоянии объяснить некоторые из вновь открытых оптических явлений. Её дополнила квантовая теория света, согласно которой энергия световой волны излучается, распространяется и поглощается не непрерывно, а определенными порциями - квантами света, или фотонами, - которые зависят только от длины световой волны. Таким образом, по современным представлениям, свет обладает как волновыми так, и корпускулярными свойствами.

Интерференция света

Волны создающие в каждой точке пространства колебания с не изменяющейся со временем разностью фаз, называются когерентными. Разность фаз в этом случае имеет постоянное, но, вообще говоря, различное для разных точек пространства значение. Очевидно, что когерентными могут быть лишь волны одинаковой частоты.

При распространении в пространстве нескольких когерентных волн порождаемые этими волнами колебания в одних точках усиливают друг друга, в других – ослабляют. Это явление называется интерференцией волн. Интерферировать могут волны любой физической природы. Мы рассмотрим интерференцию световых волн.

Источники когерентных волн также называются когерентными. При освещении некоторой поверхности несколькими когерентными источниками света на этой поверхности возникают в общем случае чередующиеся светлые и темные полосы.

Два независимых источника света, например две электролампы, не когерентны. Излучаемые ими световые волны – это результат сложения большого количества волн, излучаемых отдельными атомами. Излучение волн атомами происходит беспорядочно, и поэтому нет каких - либо постоянных соотношений между фазами волн, излучаемых двумя источниками.

При освещении поверхности некогерентными источниками характерная для интерференции картина чередующихся светлых и темных полос не возникает. Освещенность в каждой точке оказывается равной сумме освещенностей, создаваемых каждым из источников в отдельности.

Когерентные волны получаются посредством разделения пучка света от одного источника на два или несколько отдельных пучков.

Интерференцию света можно наблюдать при освещении монохроматическими (одноцветными) лучами прозрачной пластинки переменной толщины, в частности клинообразной пластинки. В глаз наблюдателя будут попадать волны, отраженные как от передней, так и от задней поверхностей пластинки. Результат интерференции определяется разностью фаз тех и других волн, которая постепенно изменяется с изменением толщины

пластинки. Соответственно изменяется освещенность: если разность хода интерферирующих волн в некоторой точке поверхности пластинки равна четному числу полуволн, то в этой точке поверхность будет казаться светлой, при разности фаз в нечетное число полуволн – темной.

При освещении параллельным пучком плоскопараллельной пластинки разность фаз световых волн, отраженных от передней и задней её поверхностей, одна и та же во всех точках, - пластинка будет казаться освещенной равномерно.

Вокруг точки соприкосновения слегка выпуклого стекла с плоским при освещении монохроматическим светом наблюдаются темные и светлые кольца – так называемые кольца Ньютона. Здесь тончайшая прослойка воздуха между обоими стеклами играет роль отражающей пленки, имеющей постоянную толщину по концентрическим окружностям.

Дифракция света.

У световой волны не происходит изменения геометрической формы фронта при распространении в однородной среде. Однако если распространение света осуществляется в неоднородной среде, в которой, например, находятся не прозрачные экраны, области пространства со сравнительно резким изменением показателя преломления и т. п., то наблюдается искажение фронта волны. В этом случае происходит перераспределение интенсивности световой волны в пространстве. При освещении, например, непрозрачных экранов точечным источником света на границе тени, где согласно законам геометрической оптики должен был бы проходить скачкообразный переход от тени к свету, наблюдается ряд тёмных и светлых полос, часть света проникает в область геометрической тени. Эти явления относятся к дифракции света.

Итак, дифракция света в узком смысле - явление огибания светом контура непрозрачных тел и попадание света в область геометрической тени; в широком смысле - всякое отклонение при распространении света от законов геометрической оптики.

Определение Зоммерфельда: под дифракцией света понимают всякое отклонение от прямолинейного распространения, если оно не может быть объяснено как результат отражения, преломления или изгибания световых лучей в средах с непрерывно меняющимся показателем преломления.

Если в среде имеются мельчайшие частицы (туман) или показатель преломления заметно меняется на расстояниях порядка длины волны, то в этих случаях говорят о рассеянии света и термин «дифракция» не употребляется.

Различают два вида дифракции света. Изучая дифракционную картину в точке наблюдения, находящейся на конечном расстоянии от препятствия, мы имеем дело с дифракцией Френеля. Если точка наблюдения и источник света расположены от препятствия так далеко, что лучи, падающие на препятствие, и лучи, идущие в точку наблюдения, можно считать параллельными пучками, то говорят о дифракции в параллельных лучах – дифракции Фраунгофера.

Теория дифракции рассматривает волновые процессы в тех случаях, когда на пути распространения волны имеются какие – либо препятствия.

С помощью теории дифракции решают такие проблемы, как защита от шумов с помощью акустических экранов, распространение радиоволн над поверхностью Земли, работа оптических приборов (так как изображение, даваемое объективом, - всегда дифракционная картина), измерения качества поверхности, изучение строения вещества и многие другие.

Поляризация света

Явления интерференции и дифракции, послужившие для обоснования волновой природы света, не дают еще полного представления о характере световых волн. Новые черты открывает нам опыт над прохождением света через кристаллы, в частности через турмалин.

Возьмем две одинаковые прямоугольные пластинки турмалина, вырезанные так, что одна из сторон прямоугольника совпадает с определенным направлением внутри кристалла, носящим название оптической оси. Наложим одну пластинку на другую так, чтобы оси их совпадали по направлению, и пропустим через сложенную пару пластинок узкий пучок света от фонаря или солнца. Так как турмалин представляет собой кристалл буро – зеленого цвета, то след прошедшего пучка на экране представится в виде тёмно – зеленого пятнышка. Начнем поворачивать одну из пластинок вокруг пучка, оставляя вторую неподвижной. Мы обнаружим, что след пучка становится слабее, и когда пластинка повернётся на 90 0 , он совсем исчезнет. При дальнейшем вращении пластинки проходящий пучок вновь начнет усиливаться и дойдет до прежней интенсивности, когда пластинка повернется на 180 0 , т.е. когда оптические оси пластинок вновь расположатся параллельно. При дальнейшем вращении турмалина пучок вновь слабеет.

Можно объяснить все наблюдающиеся явления, если сделать следующие выводы.

1) Световые колебания в пучке направлены перпендикулярно к линии распространения света (световые волны поперечны).

2) Турмалин способен пропускать световые колебания только в том случае, когда они направлены определенным образом относительно его оси.

3) В свете фонаря(солнца) представлены поперечные колебания любого направления и притом в одинаковой доле, так что ни одно направление не является преимущественным.

Термин «дуализм» в физике в широком смысле означает:

1) существование противоположных свойств у физических объектов;

2) использование противоположных понятий при описании и объяснении физических явлений;

3) наличие противоположных (взаимоисключающих) утверждений в формулировке законов, управляющих физическими явлениями.

Наиболее фундаментальными проявлениями дуализма являются:

1) корпускулярно-волновой дуализм в свойствах элементарных частиц;

2) наличие в природе частиц и античастиц, противоположных электрических зарядов, различного знака лептонных и барионных чисел (см. ч. IV, § 23) и др.;

3) противоположные свойства у частиц вещества и у силовых полей, т. е. у «корпускулярной» и «полевой» материи;

4) использование понятий «энергия» и «работа»;

5) существование в физических системах сил отталкивания и сил притяжения, одновременное действие которых определяет свойства физических систем;

6) связь между количественными и качественными изменениями в свойствах физических систем;

7) однозначность и вероятность в законах физики;

8) дискретность и непрерывность в природе, связь между ними и т. д.

Сущность дуализма (т. е. содержание терминов «противоположные свойства», «понятия», «утверждения») может быть показана на примере сочетания корпускулярных и волновых свойств у элементарных частиц (фотонов, электронов и т. д.). В тексте (см. ч. IV, § 10-12) было показано, что:

1) корпускулярные и волновые свойства частиц неотделимы друг от друга. Каждая частица имеет оба эти свойства в единстве и

взаимной обусловленности, причем нет никакой возможности лишить частицу одного из этих свойств. По-видимому, не существуют частицы, обладающие только корпускулярными или только волновыми свойствами;

2) корпускулярные и волновые свойства несводимы друг к другу. Это означает, что волновые свойства частицы нельзя объяснить через корпускулярные, и наоборот;

3) корпускулярные и волновые свойства неразрывно связаны между собой.

Корпускулярно-волновой дуализм лежит в основе квантовой физики, описывающей микрофизические системы и процессы. Таким образом, один из важнейших разделов современной физики является дуалистическим по своему характеру и содержанию. Непрерывная волновая функция частиц и физических систем, с одной стороны, корпускулярные свойства этих же частиц и систем - с другой, существуют в квантовой физике в единстве и взаимной связи. Все попытки устранить этот дуализм успеха не имели. Поэтому можно утверждать, что дуализм в квантовой теории есть не временное, случайное, побочное явление, вызванное, например, трудностями описания микрофизических систем, а отражение господствующего в природе объективного дуализма.

Рассмотрим другое проявление дуализма в природе - наличие частиц и античастиц. Предварительно заметим, что физические свойства частиц можно условно разделить на две группы:

1) свойства, которые у различных частиц отличаются только по величине; к важнейшим из них относится инертная масса. Заметим, что масса не является аддитивным свойством (масса физической системы меньше суммы масс составных частиц, измеренных в свободном состоянии), зависит от состояния частицы (скорости движения) и от условий, в которых находится частица (масса нуклонов в поле ядерных сил отличается от их масс вне ядра);

2) свойства, отличающиеся качественно, например противоположные электрические заряды. Заметим, что заряды обладают аддитивностью, не зависят от скорости движения и от условий, в которых находятся заряженные частицы. Это означает, что заряды (а также и лептонные и барионные числа) являются более фундаментальными свойствами частиц, чем инертная масса.

Элементарные частицы могут сортироваться по набору присущих им фундаментальных свойств. В зависимости от характера и числа этих свойств определяется содержание таких понятий, как «одинаковые» или «различные» частицы. Очевидно, что тождественность частиц (или вообще физических объектов) есть предельный случай одинаковости, когда между объектами нет никакого различия: ни в наборе присущих им свойств, ни в их структуре, состоянии и поведении в различных условиях (такими тождественными объектами являются элементарные частицы определенного сорта, находящиеся в одинаковых условиях). Противоположность физических объектов следует рассматривать как предельный случай различия, когда это различие является полным, т. е. объекты не имеют никаких одинаковых свойств.

Заметим, что частицы и античастицы в этом смысле не являются противоположностями, так как они имеют кроме различных еще и одинаковые свойства (так, например, электрон и позитрон имеют различные заряды, но одинаковые по величине спины и массы покоя). Таким образом, частицы и античастицы являются полярными, но не противоположными объектами.

В связи с изложенным возникают следующие вопросы:

1) существуют ли в природе «противоположные объекты»;

2) возможно ли взаимодействие между ними, каковы особенности этого взаимодействия и значение в природе;

3) чем отличаются взаимодействия между одинаковыми, полярными и противоположными объектами.

Обсуждение этих вопросов имеет важное мировоззренческое значение; положительные результаты этого обсуждения позволят уточнить наши представления о том, как устроена окружающая нас природа. Такое обсуждение должно проводиться на основе определенной философской системы и затронет все разделы физики. В частности, можно полагать, что противоположными объектами в природе являются «вещество» и «поля». Под «веществом» обычно понимаются элементарные частицы и системы, составленные из них: атомные ядра, атомы, молекулы и т. д.; под «полем» понимаются различные силовые поля: гравитационные, электромагнитные, ядерные и т. д. Существуют два представления о полях. В одном из них предполагается, что поля непрерывно заполняют пространство вокруг частиц вещества и, будучи «особым образом» связаны с ними, определяют характер и интенсивность взаимодействия между ними. В другом представлении предполагается, что каждое поле состоит из «особых частиц поля», которые испускаются и поглощаются частицами вещества и тем самым вызывают силы взаимодействия между ними. Например, электромагнитное поле считается состоящим из фотонов («фотонный газ»); если их число в единице объема очень велико, то электромагнитное поле будет вести себя как непрерывная среда; если же это число мало и изучаются процессы, в которых участвуют отдельные фотоны, то понятие электромагнитного поля как непрерывной среды теряет смысл.

Здесь необходимо подчеркнуть, что существующие в настоящее время представления о веществе и полях не следует полагать окончательными. Развитие экспериментальной и теоретической физики может привести не только к уточнению, но и к радикальным изменениям наших представлений о природе и о сущности происходящих в ней явлений. Возможно, что в будущем восторжествуют монистические мировоззрения, согласно которым природа состоит: 1) либо только из частиц вещества, а поле есть лишь способ описания взаимодействия между ними; 2) либо только из различных полей, а частицы вещества есть лишь их «особые точки». Однако не исключено, что все известные опытные данные получат удовлетворительное объяснение и на основе дуалистического мировоззрения, в котором вещество и поля полагаются противоположными объектами, несводимыми и неотделимыми друг от друга, неразрывное взаимодействие которых является основой всех наблюдаемых нами явлений природы.

Дуализм обнаруживается и в одновременном существовании вероятностного и однозначного описания физических явлений. Классическое, строго детерминированное описание невозможно исключить из физики; оно необходимо для описания наивероятного течения физических явлений. С другой стороны, всегда существует разброс состояний изучаемых объектов (и физических величин, описывающих эти состояния), и этот разброс носит вероятностный характер. В настоящее время объективное существование вероятностных процессов в природе считается обоснованным теоретически и экспериментально; в квантовой физике (см. ч. IV, § 10, 11) вообще отрицается однозначность в поведении элементарных частиц и микросистем. Это означает не полное отрицание однозначности (детерминированности) в природе, а лишь ограничение области действия. Однозначность и вероятность являются дуалистическими понятиями; они неотделимы (вероятностный разброс существует вокруг наивероятных значений, входящих в однозначные законы), несводимы (невозможно ограничиться только одним способом описания физических явлений), а их взаимную связь можно заметить почти во всех разделах физики.

Дуализм у элементарных частиц имеет существенно важное значение в формировании свойств физических систем, образованных из этих частиц. Рассматривая известные микрофизические системы, можно заметить, что они образованы в конечном счете из различных частиц. Одинаковые частицы либо не взаимодействуют, либо же отталкиваются друг от друга и физической системы с качественно новыми свойствами не образуют. Так, например, протоны, нейтроны и электроны в отдельности не образуют физических систем, но, соединяясь вместе, образуют ядра и атомы различных веществ. Можно утверждать, что в совокупности одинаковых элементарных частиц всегда происходит простое (аддитивное) сложение их свойств. Только при взаимодействии частиц, обладающих противоположными свойствами, происходит особый (качественный) синтез этих свойств, благодаря чему физические системы приобретают новые свойства. Таким образом, можно утверждать, что появление качественно новых свойств возможно только при взаимодействии суьцественно различных частиц.

Объективный дуализм природы находит свое отражение и в важнейших физических понятиях. Типичным примером являются понятия дискретности и непрерывности. Они несводимы друг к другу; в противном случае можно было бы ограничиться использованием только одного из этих понятий. В истории физики известны попытки исключить дискретность или непрерывность из описания явлений, но они успеха не имели. Они неотделимы друг от друга и неразрывно взаимосвязаны во всех физических явлениях, так как в них обязательно участвуют частицы и поля, вносящие своими фундаментальными свойствами элементы дискретности и непрерывности.

В заключение заметим, что и сама физика как наука развивается на основе взаимодействия двух противоположных частей - теоретической и экспериментальной, которые неотделимы и взаимосвязаны, несводимы друг к другу и взаимодействуют, определяя направление и ход развития физических наук.

  • 8. Ннтерференционные приборы и их применение.
  • 9. Принцип Гюйгенса-Френеля.
  • 10. Метод зон Френеля.
  • 11. Явление дифракции. Дифракция Френеля на круглом отверстии.
  • Дифракция френеля на круглых отверстиях
  • 12. Явление дифракции. Дифракция Френеля на непрозрачном диске.
  • 14. Дифракционная решетка. Главные и дополнительные максимумы и минимумы.
  • 15. Расчет формулы дифракционной решетки
  • 16. Применение дифракционной решетки. Разрешающая способность.
  • Применение явлений д-ии света
  • 17. Дифракция рентгеновских лучей.
  • 18 .Основы голограмм.
  • 19. Дисперсия света.
  • 33. Квантовая теория Планка. Формула Планка.
  • 20. Электронная теория дисперсии света.
  • 21. Поглощение света. Закон Бугера.
  • В прозрачных изотропных средах и в кристаллах куб. Системы может возникать двойной луч преломления под влиянием внеш. Воздейс–й, в частности это происходит при мех. Дифор. Тв. Тел.
  • 27. Вращение плоскости поляризации. Эффект Фарадея.
  • 28. Тепловое излучение и его характеристики.
  • 29. Закон Кирхгофа для равновесного излучения.
  • 30 Абсолютно черное тело. Закон Стефана-Больцмана.
  • 72. Ядерные реакции и законы сохранения.
  • 31. Абсолютно черное тело. Закон смещения Вина.
  • 32. Абсолютно черное тело. Формула Релея-Джинса.
  • 34. Внешний фотоэффект и его законы.
  • 35. Уравнение Эйнштейна для внешнего фотоэффекта.
  • 36. Модель атома Резерфорда и ее недостатки.
  • 37. Закономерности в спектре излучения атома водорода.
  • 38. Постулаты Бора. Модель атома Бора.
  • 39. Корпускулярно-волновой дуализм свойств вещества.
  • 44. Уравнение Шредингера для стационарных состояний.
  • 40. Волны де Бройля и их свойства.
  • 41. Соотношение неопределенности Гейзенберга.
  • 42. Волновая функция и её статический смысл.
  • 43. Общее уравнение Шредингера нерелятивистской квантовой механики
  • 45. Прохождение частицы через потенциальный барьер.
  • 46. Решение уравнения Шредингера для водородоподобных атомов
  • 47. Квантовые числа, их физический смысл.
  • 49. Спин электрон. Спиновое квантовое число.
  • 48. Пространственное распределение электрона в атоме водорода.
  • 50. Принцип Паули. Распределение электронов в атоме по состояниям.
  • 55. Спонтанное и вынужденное излучение фотонов.
  • 51. Периодическая система Менделеева.
  • 52. Рентгеновские спектры. Природа сплошного и характеристического рентгеновских спектров.
  • 73. Реакция деления ядер.
  • 53. Физическая природа химической связи в молекулах. Понятие об энергетических уровнях.
  • 54. Колебательные и вращательные спектры молекул.
  • 56. Принцип работы квантового генератора.
  • 57. Твердотельные и газоразрядные лазеры. Их применение.
  • 58. Фононы. Теплоемкость кристаллической решетки.
  • 59. Элементы зонной теории в кристаллах.
  • 60. Энергетические зоны в кристаллах. Валентная и зона проводимости.
  • 61. Заполнение зон: диэлектрики, проводники, полупроводники по зонной теории.
  • 63. Основы квантовой теории электропроводимости металла. Сверхпроводимость.
  • 66. Электронные и дырочные полупроводники.
  • 62. Понятие о квантовой статистике Ферми-Дирака. Уровень Ферми.
  • 64. Собственная проводимость полупроводников.
  • 65. Примесная проводимость полупроводников.
  • 67. Контакт электронного и дырочного полупроводников …
  • 68. Строение атомных ядер. Массовое и зарядовые числа. Нуклоны.
  • 69. Взаимодействие нуклонов. Свойства и природа ядерных сил.
  • 71. Правила смещения. Α-распад. Взаимопревращения …
  • 70. Естественная радиоактивность. Закон радиоактивного распада.
  • 75. Термоядерная реакция и проблемы её управления.
  • 76. Элементарные частицы. Космическое излучение. …
  • 74. Цепная реакция деления ядер. Ядерный реактор.
  • 39. Корпускулярно-волновой дуализм свойств вещества.

    Корпускулярно-волновой дуализм свойств ЭМ излучения. Это означает, что природу света можно рассматривать с двух сторон: с одной стороны это волна, свойства которой проявляются в закономерностях распространения света, интерференции, дифракции, поляризации. С другой стороны свет - это поток частиц, обладающие энергией, импульсом. Корпускулярные свойства света проявляются в процессах взаимодействия света с веществом (фотоэффект, эффект Комптона).

    Анализируя можно понять, что чем больше длина волны l, тем меньше энергия (из Е= hс/l), тем меньше импульс, тем труднее обнаруживаются квантовые свойства света.

    Чем меньше l => больше энергия Е фотона, тем труднее обнаруживаются волновые свойства света.

    Взаимосвязь между двойственными корпускулярно-волновыми свойствами света можно объяснить, если использовать статистический подход к рассмотрению закономерностей распределения света.

    Например, дифракция света на щели: при прохождении света через щель происходит перераспределение фотонов в пространстве. Так как вероятность попадания фотона в различные точки экрана неодинаковая, то возникает дифракционная картина. Освещенность экрана (количество фотонов на него падающих) пропорциональна вероятности попадания фотона в эту точку. С другой стороны освещенность экрана пропорциональна квадрату амплитуды волны I~E 2 . Поэтому квадрат амплитуды световой волны в данной точке пространства является мерой вероятности попадания фотона в эту точку пространства.

    44. Уравнение Шредингера для стационарных состояний.

    Уравнение (217.5) называется уравнением Шредингера для стационарных состояний. В это уравнение в качестве параметра входит полная энергия Е частицы. В теории дифференциальных уравнений доказывается, что подобные уравнения имеют бесчисленное множество решений, из которых посредством наложения граничных условий отбирают решения, имеющие физический смысл. Для уравнения Шредингера такими условиями являются условия регулярности волновых функций: волновые функции должны быть конечными, однозначными и непрерывными вместе со своими первыми производными. Таким образом, реальный физический смысл имеют только такие решения, которые выражаются регулярными функциями  Но регулярные решения имеют место не при любых значениях параметра Е, а лишь при определенном их наборе, характерном для данной задачи. Эти значения энергии называются собственными. Решения же, которые соответствуют собственным значениям энергии, называются собственными функциями. Собственные значения Е могут образовывать как непрерывный, так и дискретный ряд. В первом случае говорят о непрерывном, или сплошном, спектре, во втором - о дискретном спектре.

    40. Волны де Бройля и их свойства.

    Де Бройль утверждал, что не только фотоны, но и электроны и любые другие частицы материи наряду с корпускулярными обладают так­же волновыми свойствами. Итак, согласно де Бройлю, с каждым микрообъектом связываются, с одной стороны, корпускулярные характеристики - энергия Е и импульс р, а с другой - волновые характеристики - частота v и длина волны К. Количественные соотношения, связывающие корпускулярные и волновые свойства частиц, такие же, как для фотонов: E = hv , p = h / . (213.1) Смелость гипотезы де Бройля заключалась именно в том, что соотношение (213.1) постулировалось не только для фотонов, но и для других микрочастиц, в частности для таких, которые обладают массой покоя. Таким образом, любой частице, обладающей импульсом, сопоставляют волновой процесс с длиной волны, определяемой по формуле де Бройля: = h / p . (213.2) Это соотношение справедливо для любой частицы с импульсом р. Вскоре гипотеза де Бройля была подтверждена экспериментально. (К. Дэвиссон, Л. Джермер) обнаружили, что пучок электронов, рассеивающийся от естественной дифракционной решетки - кристалла никеля, - дает отчетливую дифракционную картину. Дифракционные максимумы соответствовали формуле Вульфа - Брэггов (182.1), а брэгговская длина волны оказалась в точности равной длине волны, вычисленной по формуле (213.2). В дальнейшем формула де Бройля была подтверждена опытами П. С. Тартаковского и Г. Томсона, наблюдавших дифракционную картину при прохождении пучка быстрых электронов (энергия 50 кэВ) через металлическую фольгу (толщиной 1 мкм). Так как дифракционная картина исследовалась для потока электронов, то необходимо было доказать, что волновые свойства присущи не только потоку большой совокупности электронов, но и каждому электрону в отдельности. Это удалось экспериментально подтвердить в 1948 г. советскому физику В. А. Фабриканту (р. 1907). Он показал, что даже в случае столь слабого электронного пучка, когда каждый электрон проходит через прибор независимо от других (промежуток времени между двумя электронами в 10 4 раз больше времени прохождения электроном прибора), возникающая при длительной экспозиции дифракционная картина не отличается от дифракционных картин, получаемых при короткой экспозиции для потоков электронов, в десятки миллионов раз более интенсивных. Следовательно, волновые свойства частиц не являются свойством их коллектива, а присущи каждой частице в отдельности. Впоследствии дифракционные явления обнаружили также для нейтронов, протонов, атомных и молекулярных пучков. Экспериментальное доказательство наличия волновых свойств микрочастиц привело к выводу о том, что перед нами универсальное явление, общее свойство материи. Но тогда волновые свойства до­лжны быть присущи и макроскопическим телам. Почему же они не обнаружены экспериментально? Например, частице массой 1 г, движущейся со скоростью 1 м/с, соответствует волна де Бройля с =6,62 10 -31 м. Такая длина волны лежит за пределами доступной наблюдению области (периодических структур с периодом d10 -31 м не существует). Поэтому считается, что макроскопические тела проявляют только одну сторону своих свойств - корпускулярную - и не проявляют волновую. Представление о двойственной корпускулярно-волновой природе частиц вещества углубляется еще тем, что на частицы вещества переносится связь между полной энергией частицы г и частотой v волн де Бройля: e=hv. (213.3) Это свидетельствует о том, что соотношение между энергией и частотой в формуле (213.3) имеет характер универсального соотношения, справедливого как для фотонов, так и для любых других микрочастиц. Справедливость же соотношения (213.3) вытекает из согласия с опытом тех теоретических результатов, которые получены с его помощью в квантовой механике, атомной и ядерной физике. Подтвержденная экспериментально гипотеза де Бройля о корпускулярно-волновом дуализме свойств вещества коренным образом изменила представления о свойствах микрообъектов. Всем микро­объектам присущи и корпускулярные, и волновые свойства; в то же время любую из микрочастиц нельзя считать ни частицей, ни волной в классическом понимании. Современная трактовка корпускулярно-волнового дуализма может быть выражена словами советского физика-теоретика В. А. Фока (1898-1974): «Можно сказать, что для атомного объекта существует потенциальная возможность проявлять себя, в зависимости от внешних условий, либо как волна, либо как частица, либо промежуточным образом. Именно в этой потенциальной возможности различных проявлений свойств, присущих микрообъекту, и состоит дуализм волна - частица. Всякое иное, более буквальное, понимание этого дуализма в виде какой-нибудь модели неправильно».

    Корпускулярно-волновой дуализм – свойство любой микрочастицы обнаруживать признаки частицы (корпускулы) и волны. Наиболее ярко корпускулярно-волновой дуализм проявляется у элементарных частиц. Электрон, нейтрон, фотон в одних условиях ведут себя как хорошо локализованные в пространстве материальные объекты (частицы), двигающиеся с определёнными энергиями и импульсами по классическим траекториям, а в других – как волны, что проявляется в их способности к интерференции и дифракции. Так электромагнитная волна, рассеиваясь на свободных электронах, ведёт себя как поток отдельных частиц – фотонов, являющихся квантами электромагнитного поля (Комптона эффект), причём импульс фотона даётся формулой р = h/λ, где λ – длина электромагнитной волны, а h – постоянная Планка. Эта формула сама по себе – свидетельство дуализма. В ней слева – импульс отдельной частицы (фотона), а справа – длина волны фотона. Дуализм электронов, которые мы привыкли считать частицами, проявляется в том, что при отражении от поверхности монокристалла наблюдается дифракционная картина, что является проявлением волновых свойств электронов. Количественная связь между корпускулярными и волновыми характеристиками электрона та же, что и для фотона: р = h/λ (р – импульс электрона, а λ – его длина волны де Бройля). Корпускулярно-волновой дуализм лежит в основе квантовой физики.

    Волна(мех) – процесс, всегда связанный с к-либо материальной средой, занимающей определенный объем в пространстве.

    64. Волны де Бройля. Дифракция электронов Волновые свойства микрочастиц.

    Развитие представлений о корпускулярно-волновых свойствах материи получило в гипотезе о волновом характере движения микрочастиц. Луи де Бройль из идеи симметрии в природе для частиц вещества и света приписал любой микрочастице некий внутренний периодический процесс (1924). Объединив формулы E = hν и E = mc 2 , он получил соотношение, показывающее, что любой частице соответствует своя длина волны : λ Б = h/mv = h/p, где p- импульс волны-частицы. К примеру, для электрона, имеющего энергию 10 эВ, длина волны де Бройля составляет 0,388 нм. В дальнейшем было показано, что состояние микрочастицы в квантовой механике может быть описано определенной комплекснойволновой функцией координат Ψ(q), причем квадрат модуля этой функции |Ψ| 2 определяет распределение вероятностей значений координат. Эта функция была впервые введена в квантовую механику Шредингером в 1926 г. Таким образом, волна де Бройля не несет энергию, а только отображает “распределение фаз” некоего вероятностного периодического процесса в пространстве. Следовательно, описание состояния объектов микромира носит вероятностный характер , в отличие от объектов макромира, которые описываются законами классической механики.

    Для доказательства идеи де Бройля о волновой природе микрочастиц немецкий физик Эльзассер предложил использовать кристаллы для наблюдения дифракции электронов (1925). В США К. Дэвиссон и Л. Джермер обнаружили явление дифракции при прохождении пучка электронов через пластинку из кристалла никеля (1927). Независимо от них дифракцию электронов при прохождении через металлическую фольгу открыли Дж. П. Томсон в Англии и П.С. Тартаковский в СССР. Так идея де Бройля о волновых свойствах вещества нашла экспериментальное подтверждение. Впоследствии дифракционные, а значит волновые, свойства были обнаружены у атомных и молекулярных пучков. Корпускулярно-волновыми свойствами обладают не только фотоны и электроны, но и все микрочастицы.

    Октрытие волновых свойств у микрочастиц показало, что такие формы материи, как поле (непрерывное) и вещество (дискретное), которые с точки зрения классической физики, считались качественно отличающимися, в определенных условиях могут проявлять свойства, присущие и той и другой форме. Это говорит о единстве этих форм материи. Полное описание их свойств возможно только на основе противоположных, но дополняющих друг - друга представлений.

    Типичные примеры объектов, проявляющих двойственное корпускулярно-волновое поведение - электроны и свет ; принцип справедлив и для более крупных объектов, но, как правило, чем объект массивнее, тем в меньшей степени проявляются его волновые свойства (речь здесь не идёт о коллективном волновом поведении многих частиц, например, волны на поверхности жидкости).

    Идея о корпускулярно-волновом дуализме была использована при разработке квантовой механики для интерпретации явлений, наблюдаемых в микромире, с точки зрения классических концепций. В действительности квантовые объекты не являются ни классическими волнами, ни классическими частицами, проявляя свойства первых или вторых лишь в зависимости от условий экспериментов, которые над ними проводятся. Корпускулярно-волновой дуализм необъясним в рамках классической физики и может быть истолкован лишь в квантовой механике .

    Дальнейшим развитием представлений о корпускулярно-волновом дуализме стала концепция квантованных полей в квантовой теории поля .

    Волны де Бройля

    Количественное выражение принцип корпускулярно-волнового дуализма получает в идее волн де Бройля. Для любого объекта, проявляющего одновременно волновые и корпускулярные свойства, имеется связь между импульсом p {\displaystyle \mathbf {p} } и энергией E {\displaystyle E} , присущими этому объекту как частице, и его волновыми параметрами - волновым вектором k {\displaystyle \mathbf {k} } , длиной волны λ {\displaystyle \lambda } , частотой ν {\displaystyle \nu } , циклической частотой ω {\displaystyle \omega } . Эта связь задаётся соотношениями :

    p = ℏ k ; | p | = h / λ , {\displaystyle \mathbf {p} =\hbar \mathbf {k} ;\ |\mathbf {p} |=h/\lambda ,} E = ℏ ω = h ν , {\displaystyle E=\hbar \omega =h\nu ,}

    где ℏ {\displaystyle \hbar } и h = 2 π ℏ {\displaystyle h=2\pi \hbar } - редуцированная и обычная постоянная Планка , соответственно. Эти формулы верны для релятивистских энергии и импульса.

    Волна де Бройля ставится в соответствие любому движущемуся объекту микромира; таким образом, в виде волн де Бройля и свет, и массивные частицы подвержены интерференции и дифракции . В то же время чем больше масса частицы, тем меньше её дебройлевская длина волны при той же скорости, и тем сложнее зарегистрировать её волновые свойства. Грубо говоря, взаимодействуя с окружением, объект ведёт себя как частица, если длина его дебройлевской волны много меньше характерных размеров, имеющихся в его окружении, и как волна - если много больше; промежуточный случай может быть описан только в рамках полноценной квантовой теории.

    Физический смысл волны де Бройля таков: квадрат модуля амплитуды волны в определённой точке пространства равен плотности вероятности обнаружения частицы в данной точке, если будет проведено измерение её положения. В то же время, пока измерение не проведено, частица в действительности не находится в каком-либо одном конкретном месте, а «размазана» по пространству в виде дебройлевской волны.

    История развития

    Вопросы о природе света и вещества имеют многовековую историю, однако до определённого времени считалось, что ответы на них обязаны быть однозначными: свет - либо поток частиц, либо волна; вещество либо состоит из отдельных частиц, подчиняющихся классической механике , либо представляет собой сплошную среду.

    Казавшееся устоявшимся волновое описание света оказалось неполным, когда в 1901 году Планк получил формулу для спектра излучения абсолютно чёрного тела , а затем Эйнштейн объяснил фотоэффект , опираясь на предположение, что свет с определённой длиной волны излучается и поглощается исключительно определёнными порциями. Такая порция - квант света, позднее названный фотоном - переносит энергию, пропорциональную частоте световой волны с коэффициентом h {\displaystyle h} - постоянная Планка . Таким образом, оказалось, что свет проявляет не только волновые, но и корпускулярные свойства.

    Более конкретное и корректное воплощение принцип корпускулярно-волнового дуализма получил в «волновой механике» Шрёдингера, которая затем превратилась в современную квантовую механику.

    Корпускулярно-волновой дуализм света

    Как классический пример применения принципа корпускулярно-волнового дуализма, свет можно трактовать как поток корпускул (фотонов), которые во многих физических эффектах проявляют свойства классических электромагнитных волн . Свет демонстрирует свойства волны в явлениях дифракции и интерференции при масштабах, сравнимых с длиной световой волны. Например, даже одиночные фотоны, проходящие через двойную щель , создают на экране интерференционную картину, определяемую уравнениями Максвелла .

    Тем не менее, эксперимент показывает, что фотон не есть короткий импульс электромагнитного излучения, например, он не может быть разделён на несколько пучков оптическими делителями лучей, что наглядно показал эксперимент, проведённый французскими физиками Гранжье, Роже и Аспэ в 1986 году . Корпускулярные свойства света проявляются в закономерностях равновесного теплового излучения, при фотоэффекте и в эффекте Комптона . Фотон ведёт себя и как частица, которая излучается или поглощается целиком объектами, размеры которых много меньше его длины волны (например, атомными ядрами), или вообще могут считаться точечными (например, электрон).

    Чем меньше длина волны электромагнитного излучения, тем больше энергия и импульс фотонов и тем труднее обнаружить волновые свойства этого излучения. Например, рентгеновское излучение дифрагирует только на очень «тонкой» дифракционной решётке - кристаллической решётке твёрдого тела.

    Волновое поведение крупных объектов

    Волновое поведение проявляют не только элементарные частицы и нуклоны, но и более крупные объекты - молекулы. В 1999 году впервые наблюдалась дифракция фуллеренов . В 2013 году удалось добиться дифракции молекул массой более 10000 а.е.м. , состоящих более чем из 800 атомов каждая .

    Тем не менее, нет полной уверенности, могут ли в принципе проявлять волновое поведение объекты с массой, превышающей планковскую .

    См. также

    Примечания

    1. Слово «корпускула» означает «частица» и вне контекста корпускулярно-волнового дуализма практически не используется.
    2. Герштейн С. С. Корпускулярно-волновой дуализм // Физическая энциклопедия : [в 5 т.] / Гл. ред. А. М. Прохоров . - М. : Советская энциклопедия, 1990. - Т. 2: Добротность - Магнитооптика. - С. 464-465. - 704 с. - 100 000 экз. -