Главная · Инструмент · Материал для печатных плат. Прессование многослойных плат

Материал для печатных плат. Прессование многослойных плат

Электронная печатная плата (русская аббревиатура — ПП, английская — PCB) представляет собой листовую панель, где размещаются взаимосвязанные микроэлектронные компоненты. Печатные платы используются в составе разной электронной техники, начиная от простых квартирных звонков, бытовых радиоприёмников, студийных радиостанций и завершая сложными радиолокационными, компьютерными системами. Технологически изготовление печатных плат электроники предполагает создание связей токопроводящим «плёночным» материалом. Такой материал наносится («печатается») на пластине-изоляторе, получившей наименование — подложка.

Электронные печатные платы отметили начало пути становления и развития системами электрических соединений, разработанных в середине XIX века.

Металлические полосы (стержни) изначально применялись громоздких электрических компонентов, смонтированных на древесном основании.

Постепенно металлические полосы вытеснили проводники с винтовыми клеммными колодками. Деревянную основу тоже модернизировали, отдав предпочтение металлу.

Примерно таким выглядел прототип современного производства ПП. Подобные решения конструирования применялись в середине XIX века

Практика применения компактных, малых по размерам электронных деталей, требовала уникального решения по базовой основе. И вот, в 1925 году некто Чарльз Дюкасс (США) нашёл такое решение.

Американский инженер предложил уникальный способ организации электрических связей на изолированной пластине. Он использовал электропроводящие чернила и трафарет для переноса принципиальной схемы на пластину.

Чуть позже — в 1943 году, англичанин Пол Эйслер также запатентовал изобретение травления токопроводящих контуров на медной фольге. Инженер использовал пластину-изолятор, ламинированную фольгированным материалом.

Однако активное применение технологии Эйслера отметилось лишь в период 1950-60 годов, когда изобрели и освоили производство микроэлектронных компонентов — транзисторов.

Технологию изготовления сквозных отверстий на многослойных печатных платах запатентовала фирма Hazeltyne (США) в 1961 году.

Так, благодаря увеличению плотности электронных деталей и тесному расположению связывающих линий, открылась новая эра дизайна печатных плат.

Электронная печатная плата – изготовление

Обобщённое видение процесса: отдельно взятые электронные детали распределяются по всей площади подложки-изолятора. Затем установленные компоненты связываются пайкой с цепями схемы.

Так называемые контактные «пальцы» (штырьки) располагаются по крайним областям подложки и выступают системными разъемами.


Современный прообраз изделий XIX века. Кардинальные технологические изменения очевидны. Однако это не самый совершенный вариант из ассортимента текущего производства

Через контактные «пальцы» организуется связь с периферийными печатными платами или подключение внешних цепей управления. Электронная печатная плата рассчитана под разводку схемы, поддерживающей одну функцию или одновременно несколько функций.

Изготавливаются три вида электронных печатных плат:

  1. Односторонние.
  2. Двусторонние.
  3. Многослойные.

Односторонние печатные электронные платы отличаются размещением деталей исключительно на одной стороне. Если комплектные детали схемы не вмещаются на односторонней плате, применяется двухсторонний вариант.

Материал изготовления подложки

Подложка, традиционно используемая в составе печатных электронных плат, обычно делается на основе стекловолокна в сочетании с эпоксидной смолой. Подложка покрывается медной фольгой по одной или двум сторонам.

Печатные платы электроники, изготовленные на основе бумаги с фенольной смолой, также покрытые плёночной медью, считаются экономически выгодными для производства. Поэтому чаще других вариаций используются под оснащение бытовой электронной техники.


Материалы печатной платы электроники: 1 — диэлектрический материал; 2 — верхнее покрытие; 3 — материал сквозных отверстий; 4 — маска припоя; 5 — материал кольцевого контура

Разводка связей выполняется методом покрытия, либо методом травления медной поверхности подложки. Медные дорожки покрывают оловянно-свинцовым составом с целью защиты от коррозии. Контактные штыри на печатных платах покрывают слоем олова, затем никеля и под завершение золотят.

Выполнение операций на обвязку


Сверление отверстий на рабочей площади ПП: 1 — отверстия без контактной связи между сторонами (слоями); 2 — отверстия с покрытием для контактной связи; 3 — медная обечайка связывающих отверстий

Технология поверхностного монтажа предполагает использование прямой (J-образная) или угловой (L-образная) ветвей. За счёт таких ветвей каждая электронная деталь напрямую обвязывается с печатной схемой.

Применением комплексной пасты (клей+флюс+припой) электронные детали временно удерживаются в точке контакта. Удержание продолжается до момента, когда печатная электронная плата заводится в печь. Там припой плавится и соединяет схемные детали.

Несмотря на сложности с размещением компонентов, технология поверхностного монтажа обладает другим важным преимуществом.

Эта методика исключает длительный процесс сверления и внедрение связывающих прокладок, как это практикуется для устаревшего метода сквозных отверстий. Однако обе технологии продолжают активно использоваться.

Дизайн электронных печатных плат

Каждая отдельно взятая печатная плата электроники (партия плат) предназначена под уникальный функционал. Разработчики электронных печатных плат обращаются к системам проектирования и специализированному «ПО» для компоновки схемы на печатной плате.


Структура фоторезистивного покрытия: 1 — пластиковая плёнка; 2 — сторона наложения; 3 — чувствительная сторона фоторезистивной панели

Разрыв между токопроводящими дорожками обычно измеряется значениями не более 1 мм. Рассчитываются точки расположения отверстий для компонентных проводников или контактных точек.

Вся эта информация переводится под формат ПО компьютера, управляющего сверлильным станком. Аналогичным образом программируется автоматический для изготовления электронных печатных плат.

Как только схема цепей выложена, негатив изображения схемы (маска) переносится на прозрачный лист пластика. Области негативного изображения, не входящие в образ схемы, отмечены черным цветом, а непосредственно схема остаётся прозрачной.

Промышленное изготовление печатных плат электроники

Технологии изготовления печатных плат электроники предусматривают условия производства с чистой средой. Атмосфера и объекты производственных помещений контролируются автоматикой на присутствие загрязнений.


Структура гибкой ПП: 1, 8 — полиимидная плёнка; 2, 9 — связывающее 1; 3 -связывающее 2; 4 — шаблон; 5 — базовая полиимидная плёнка; 6 — клейкая плёнка; 7 — шаблон

Многие компании-производители электронных печатных плат практикуют уникальные производства. А в стандартном виде изготовление двухсторонней печатной электронной платы традиционно предусматривает следующие шаги:

Изготовление основания

  1. Берётся стекловолокно и пропускается через технологический модуль.
  2. Пропитывается эпоксидной смолой (погружением, распылением).
  3. Стекловолокно прокатывают на станке до желаемой толщины подложки
  4. Сушка подложки в печи и раз на крупные панели.
  5. Панели располагаются стопками, чередуясь с медной фольгой и подложкой, покрытой клеем.

Наконец, стопки помещают под пресс, где при температуре170°C и давлении 700 кг/мм 2 , прессуют 1-2 часа. Эпоксидная смола твердеет, медная фольга связывается под прессом с материалом подложки.

Сверление и лужение отверстий

  1. Берутся несколько панелей подложки, укладываются одна на другую, жёстко закрепляются.
  2. Сложенная стопка помещается в станок с ЧПУ, где высверливаются отверстия по схемному рисунку.
  3. Сделанные отверстия очищаются от излишков материала.
  4. Внутренние поверхности токопроводящих отверстий покрываются медью.
  5. Непроводящие отверстия остаются без покрытия.

Производство рисунка схемы печатной электронной платы

Образец схемы печатной платы создаётся посредством аддитивного либо субтрактивного принципа. В случае аддитивного варианта, подложка покрывается медью по желаемой схеме. При этом необработанной остаётся часть вне схемы.


Технология получения отпечатка схемного рисунка: 1 — фоторезистивная панель; 2 — маска электронной печатной платы; 3 — чувствительная сторона платы

Субтрактивным процессом, прежде всего, покрывается общая поверхность подложки. Затем отдельные участки, не входящие в рисунок схемы, вытравливаются либо вырезаются.

Как проходит аддитивный процесс?

Фольгированная поверхность подложки предварительно обезжиривается. Панели проходят вакуумную камеру. За счёт вакуума слой положительного фоторезистивного материала плотно обжимается по всей фольгированной площади.

Положительным материалом для фоторезиста выступает полимер, обладающий способностью растворимости под излучением ультрафиолета. Условия вакуума исключают возможный остаток воздуха между фольгой и фоторезистом.

Шаблон схемы укладывается поверх фоторезиста, после чего панели подвергаются интенсивному воздействию ультрафиолета. Поскольку маска оставляет прозрачными области схемы, фоторезист в этих точках попадает под УФ излучение и растворяется.

Затем маска снимается, а панели опыляются щелочным раствором. Этот, своего рода проявитель, помогает растворить облучённый фоторезист по границам областей рисунка схемы. Так, медная фольга остаётся открытой на поверхности подложки.

Далее панели гальванируются медью. Медная фольга выступает катодом в процессе гальванизации. Открытые участки гальванируются до толщины 0,02-0,05 мм. Области, остающиеся под фоторезистом, не гальванируются.

Медные разводы покрывают дополнительно оловянно-свинцовым составом или иным защитным покрытием. Этими действиями предотвращается окисление меди и создаётся резист на следующую стадию производства.

Ненужный фоторезист удаляется с подложки с помощью кислотного растворителя. Медная фольга между рисунком схемы и покрытием обнажается. Так как медь схемы печатной платы защищена оловянно-свинцовым составом, здесь проводник не подвержен воздействию кислоты.

Техника промышленного изготовления электронных плат

Базовый материал – основной носитель устройства монтажа и электронных схем печатной платы. Базовый материал поставляется производителю печатных плат в виде «панели» и обрезается под необходимый размер для производства конкретной платы. Существует множество базовых материалов для печатных плат с различной толщиной и покрытиями, так же как и различными электрическими и механическими свойствами, которые влияют на функциональность электронной схемы. См. также Материалы ПП. Часто базовый материал выполнен из стекловолокна с эпоксидной смолой (FR4), доступный в виде, фольгированном медью или препрег.

Гетинакс фольгированный - спрессованные слои электроизоляционной бумаги, пропитанной фенольной или эпоксифенольной смолой в качестве связующего вещества, облицованные с одной или двух сторон медной фольгой.

Гибкость изоляционного материала – задаётся числом циклов изгиба вокруг оправки, диаметр которой равен нескольким значениям толщины гибкого участка.

Жесткое золочение - электролитическое жесткое золочение – это защищенная от трения поверхность, используемая для золотых выводов. Мы гальванически наносим никель на медную дорожку. Затем на никель наносится золото.

Катаная медная фольга – имеет относительное удлинение в 5-6 раз больше, чем у электролитической фольги, поэтому обладает большей гибкостью, способностью к перегибам, а также способностью к механической обработке без расслоения. Является дорогостоящей. Применяется при производстве гибких печатных плат .

Материал основания печатной платы – материал (диэлектрик), на котором выполняют рисунок печатной платы.

Неупрочнённые базовые материалы – медная фольга, покрытая смолой с состоянием В – частично заполимеризованная смола или с состоянием С – полностью заполимеризованная смола, а также жидкие диэлектрики и диэлектрики с нанесенной сухой пленкой.

Нефольгированные диэлектрики бывают двух типов. 1. С клеевым слоем, который наносят для повышения прочности сцепления осаждаемой в процессе изготовления ПП меди химическим способом; 2. С введенным в объем диэлектрика катализатором, способствующим осаждению химической меди.

Печатная плата с толстой медью - обычно платой с толстой медью называется печатная плата с толщиной меди> 105µm. Такие платы используются для высоких токов переключения в автомобильной и промышленной электронике и для специфических запросов клиента. Медь предлагает самый высокий коэффициент теплопроводности после серебра.
Платы с толстым слоем меди позволяют:
Высокие токи переключения
Оптимальная теплоотдача при местном нагревании
Увеличение жизни, надежности и уровня интеграции
При этом при разработке платы должны быть приняты особые меры предосторожности касательно процесса травления, допустимы только более широкие структуры проводников.

Препреги – изоляционный прокладочный материал, используемый для склеивания слоёв МПП. Изготавливаются из стеклоткани, пропитанной недополимеризованной термореактивной эпоксидной или другими смолами.

САФ (препрег с низкой тягучестью, low flow prepreg) – склеивающий материал с регулируемой текучестью, который используется при изготовлении ГЖП, обладает адгезией как к стеклотекстолиту, так и полиимиду.

Соединение золотом - поверхность печатной платы Bond gold - это собирательный термин для поверхностей, способных к соединению, обычно золотых поверхностей. Для соединения применяются: иммерсионное золочение по подслою никеля (ENIG) для соединения алюминиевых проводов (Al), мягкое золото с электролитическим покрытием для соединения золотых проводов (Au) и ENEPIG (иммерсионное золочение по подслою никеля и палладия), которое подходит для обоих методов соединения.
Толщина золотого слоя при химическом (иммерсионном) золочении составляет около 0.3-0.6µm, при электролитическом (мягком) золочении около 1.0-2.0µm и около 0.05-0.1µm золота плюс 0.05-0.15µm палладия для ENEPIG. Слои золота базируются на приблизительно 3.0-6.0µm никеля.

Стеклотекстолит фольгированный – спрессованные слои стеклоткани, пропитанные эпоксифенольной или эпоксидной смолой. По сравнению с гетинаксом имеет лучшие механические и электрические свойства, более высокую нагревостойкость, меньшее влагопоглощение.

Технологические (расходные) материалы для изготовления ПП – фоторезисты, специальные трафаретные краски, защитные маски, электролиты меднения, травления и пр.

Упрочнённые базовые материалы и препреги – разработанные специально для лазерной технологии нетканые стекломатериалы с заданной геометрией элементарной нити и заданным распределением нити (плоской стороной в направлении оси Z), органические материалы с неориентированным расположением волокон (арамид), препрег для лазерной технологии, стандартные конструкции на основе стеклоткани и пр.

Фольгированные диэлектрики – состоят из стеклоткани, изготовленной из нитей; смолы, используемой для пропитывания стеклоткани; фольги, используемой в качестве металлического покрытия фольгированных материалов.

Фольгированный и нефольгированный полиимид – применяется в электронной аппаратуре ответственного назначения, работающей при высоких температурах, для изготовления гибких печатных плат, ГПК, гибко-жёстких печатных плат, а также многослойных печатных плат, лент-носителей интегральных схем, и больших гибридных интегральных схем с числом выводов до 1000.

Электролитическая медная фольга – недорогостоящая; применяется при изготовлении ГПК с высокой плотностью рисунка проводников. Обладает более высокой разрешающей способностью при травлении меди с пробельных мест по сравнению с катаной.

CEM 1 - это базовый материал для печатных плат, сделанный из многослойной бумаги. СЕМ 1 имеет основу из бумаги, пропитанной эпоксидной смолой, и один внешний слой из стекловолокна. Из-за бумажной основы этот материал не подходит для металлизации сквозных отверстий. Спецификация материала содержится в документе IPC-4101.

IMDS – Международная система данных по материалам (International Material Data System) . IMDS (www.mdsystem.com) была разработана производителями автомобилей для сбора состава материалов, используемых в автомобилях, деталях, устройствах и системах, чтобы идентифицировать индивидуальные компоненты материала каждой машины или под-группы (например, двигателя).
С момента вступление в силу Директивы ELV (06/21/2003), поставщики автомобильной отрасли стали обязаны предоставлять данные об ингредиентах их продуктов в рамках IMDS, чтобы определить темпы восстановления, имеющиеся в распоряжении.
Должны быть зарегистрированы в IMDS:
Печатные платы
Смонтированные печатные платы
Компоненты
ZVEI и Автомобильная отрасль подписали документ Данные по материалам для сборки – Сотрудничество по декларированию данных по материалам:
Подразделение Электронных компонентов и систем и подразделение печатных плат и электронных систем в ZVEI – немецкая Ассоциация электронных и электрических производителей разработали эффективную концепцию декларирования данных по материалам электронных компонентов и печатных плат. Данные по материалам должны быть получены путем формирования кросс-корпоративных продуктовых групп и типовыми значениями. Эти таблицы данных по материалам, называемые «зонтичные» спецификации, значительно упрощают декларирование без заметных потерь в точности. Эта концепция успешно применяется в автомобильной индустрии с 2004 года.
Чтобы применять «Зонтичные спецификации» вместе с системой IMDS, IMDS выпустили рекомендации 019 «Печатные платы». Эти рекомендации описывают метод ввода содержания материалов смонтированных печатных плат.
Выдержка из пункта 5. Стандартные правила и руководства для E/E (компонент печатной платы) из IMDS Рекомендаций 019: «Данные по компонентам печатной платы в IMDS, Umbrella Spec, IPC1752 или похожем формате принимаются, если это согласовано между бизнес партнерами».
«Зонтичные» спецификации для IMDS, разработанные ZVEI с производителями печатных плат.
Динамичная программа делает простым подсчет субстанций, содержащихся в печатной плате любого размера. Поверхность и количество слоев находятся в свободном выборе. Стандартные технологии хранятся в базе данных.

RoHS - директива о запрете вредных веществ. Данное положение законодательства Европейского Союза говорит, что электронные устройства не могут содержать свинец или другие вредные вещества. Для печатных плат выполнение RoHS контролируется по двум компонентам: базовый материал и поверхность.

Для изготовления печатной платы нам необходимо выбрать следующие материалы: материал для диэлектрического основания печатной платы, материал для печатных проводников и материал защитного покрытия от воздействия влаги. Сначала мы определим материал для диэлектрического основания печатной платы.

Существует большое разнообразие фольгированных медью слоистых пластиков. Их можно разделить на две группы:

– на бумажной основе;

– на основе стеклоткани.

Эти материалы в виде жестких листов формируются из нескольких слоев бумаги или стеклоткани, скрепленных между собой связующим веществом путем горячего прессования. Связующим веществом обычно являются фенольная смола для бумаги или эпоксидная для стеклоткани. В отдельных случаях могут также применяться полиэфирные, силиконовые смолы или фторопласт. Слоистые пластики покрываются с одной или обеих сторон медной фольгой стандартной толщины.

Характеристики готовой печатной платы зависят от конкретного сочетания исходных материалов, а также от технологии, включающей и механическую обработку плат.

В зависимости от основы и пропиточного материала различают несколько типов материалов для диэлектрической основы печатной платы.

Фенольный гетинакс - это бумажная основа, пропитанная фенольной смолой. Гетинаксовые платы предназначены для использования в бытовой аппаратуре, поскольку очень дешевы.

Эпоксидный гетинакс - это материал на такой же бумажной основе, но пропитанный эпоксидной смолой.

Эпоксидный стеклотекстолит - это материал на основе стеклоткани, пропитанный эпоксидной смолой. В этом материале сочетаются высокая механическая прочность и хорошие электрические свойства.

Прочность на изгиб и ударная вязкость печатной платы должны быть достаточно высокими, чтобы плата без повреждений могла быть нагружена установленными на ней элементами с большой массой.

Как правило, слоистые пластики на фенольном, а также эпоксидном гетинаксе не используются в платах с металлизированными отверстиями. В таких платах на стенки отверстий наносится тонкий слой меди. Так как температурный коэффициент расширения меди в 6-12 раз меньше, чем у фенольного гетинакса, имеется определенный риск образования трещин в металлизированном слое на стенках отверстий при термоударе, которому подвергается печатная плата в машине для групповой пайки.

Трещина в металлизированном слое на стенках отверстий резко снижает надежность соединения. В случае применения эпоксидного стеклотекстолита отношение температурных коэффициентов расширения примерно равно трем, и риск образования трещин в отверстиях достаточно мал.

Из сопоставления характеристик оснований следует, что во всех отношениях (за исключением стоимости) основания из эпоксидного стеклотекстолита превосходят основания из гетинакса. Печатные платы из эпоксидного стеклотекстолита характеризуются меньшей деформацией, чем печатные платы из фенольного и эпоксидного гетинакса; последние имеют степень деформации в десять раз больше, чем стеклотекстолит.

Некоторые характеристики различных типов слоистых пластиков представлены в таблице 4.

Таблица 4 – Характеристики различных типов слоистых пластиков

Сравнивая эти характеристики, делаем вывод, что для изготовления двусторонней печатной платы следует применять только эпоксидный стеклотекстолит. В данном курсовом проекте выбран стеклотекстолит марки СФ-2-35-1,5.

В качестве фольги, используемой для фольгирования диэлектрического основания, можно использовать медную, алюминиевую или никелевую фольгу. Однако алюминиевая фольга уступает медной, так как плохо поддаётся пайке, а никелевая имеет высокую стоимость. Поэтому в качестве фольги выбираем медь.

Медная фольга выпускается различной толщины. Стандартные толщины фольги наиболее широкого применения - 17,5; 35; 50; 70; 105 мкм. Во время травления меди по толщине травитель воздействует также на медную фольгу со стороны боковых кромок под фоторезистом, вызывая так называемое «подтравливание». Чтобы его уменьшить обычно применяют более тонкую медную фольгу толщиной 35 и 17,5 мкм. Поэтому выбираем медную фольгу толщиной 35 мкм.

1.7 Выбор метода изготовления печатной платы

Все процессы изготовления печатных плат можно разделить на субтрактивные и полуаддитивные.

Субтрактивный процесс (subtraction -отнимать) получения проводящего рисунка заключается в избирательном удалении участков проводящей фольги путем травления.

Аддитивный процесс (additio -прибавлять) - в избирательном осаждении проводящего материала на не фольгированный материал основания.

Полуаддитивный процесс предусматривает предварительное нанесение тонкого (вспомогательного) проводящего покрытия, впоследствии удаляемого с пробельных мест.

В соответствии с ГОСТ 23751 – 86 конструирование печатных плат следует осуществлять с учетом следующих методов изготовления:

– химического для ГПК

– комбинированного позитивного для ДПП

Металлизации сквозных отверстий для МПП

Таким образом, данная печатная плата, разрабатывае­мая в курсовом проекте, будет изготавливаться на основе двустороннего фольгированного диэлектрика комбинированным позитивным методом. Этот метод дает возможность получать проводники шириной до 0,25 мм. Проводящий рисунок получают субтрактивным методом.



2 РАСЧЁТ ЭЛЕМЕНТОВ ПРОВОДЯЩЕГО РИСУНКА

2.1 Расчет диаметров монтажных отверстий

Конструктивно-технологический расчет печатных плат производится с учетом производственных погрешностей рисунка проводящих элементов, фотошаблона, базирования, сверления и т.п. Граничные значения основных параметров печатного монтажа, которые могут быть обеспечены при конструировании и производстве для пяти классов плотности монтажа, приведены в таблице 4.

Таблица 4 – Граничные значения основных параметров печатного монтажа

Условное обозначение параметра * Номинальные значения основных размеров для класса точности
t, мм 0,75 0,45 0,25 0,15 0,10
S, мм 0,75 0,45 0,25 0,15 0,10
b, мм 0,30 0,20 0,10 0,05 0,025
g 0,40 0,40 0,33 0,25 0,20
∆t, мм +- 0,15 +- 0,10 +- 0,05 +- 0,03 0; -0,03

В таблице указанно:

t – ширина проводника;

S – расстояние между проводниками, контактными площадками, проводником и контактной площадкой или проводником и металлизированным отверстием;

b – расстояние от края просверленного отверстия до края контактной площадки данного отверстия (гарантийный поясок);

g – отношение минимального диаметра металлизированного отверстия к толщине платы.

Выбранные в соответствии с таблицей 1 размеры необходимо согласовать с технологическими возможностями конкретного производства.

Предельные значения технологических параметров конструктивных элементов печатной платы (таблица 5) получены в результате анализа производственных данных и экспериментальных исследовании точности отдельных операций.

Таблица 5 – Предельные значения технологических параметров

Наименование коэффициента Обозначения Величина
Толщина предварительно осажденной меди, мм h пм 0,005 – 0,008
Толщина наращенной гальванической меди, мм h г 0,050 – 0,060
Толщина металлического резиста, мм h р 0,020
Погрешность расположения отверстия относи­тельно координатной сетки, обусловленная точ­ностью сверлильного станка, мм. d o 0,020 – 0,100
Погрешность базирования плат на сверлильном станке, мм d б 0,010 – 0,030
Погрешность расположения относительно координатной сетки на фотошаблоне контактной площадки, мм d ш 0,020 – 0,080
Погрешность расположения относительно координатной сетки на фотошаблоне проводника, мм d ш t 0,030 – 0,080
Погрешность расположения печатных элементов при экспонировании на слое, мм d э 0,010 – 0,030
Погрешность расположения контактной площадки на слое из-за нестабильности его линейных размеров, % от толщины 0 – 0,100
Погрешность расположения базовых отверстий на заготовке, мм 0,010 – 0,030

Продолжение таблицы 5

Минимальный диаметр металлизированного (переходного) отверстия:

d min V H расч ´ g = 1,5 ´ 0,33 =0,495 мм;

где g = 0,33 - плотность печатного монтажа для третьего класса точности.

H расч – толщина фольгированного диэлектрика платы.

Физико-механические свойства ма­териалов должны удовлетворять уста­новленным ТУ и обеспечивать качест­венное изготовление ПП в соответст­вии с типовыми ТП. Для изготовле­ния плат применяют слоистые плас­тики – фольгированные диэлектрики, плакированные электролитической медной фольгой толщиной 5, 20, 35, 50, 70 и 105 мкм с чистотой меди не менее 99,5 %, шероховатостью поверх­ности не менее 0,4–0,5 мкм, которые поставляются в виде листов размера­ми 500×700 мм и толщиной 0,06–3 мм. Слоистые пластики должны об­ладать высокой химической и терми­ческой стойкостью, влагопоглощением не более 0,2–0,8 %, выдерживать термоудар (260°С) в течение 5–20с. Поверхностное сопротивление диэлектриков при 40°С и относительной влажности 93 % в течение 4 сут. долж­но быть не менее 10 4 МОм. Удельное объемное сопротивление диэлектри­ка – не менее 5·10 11 Ом·см. Проч­ность сцепления фольги с основанием (полоска шириной 3мм) – от 12 до 15 МПа. В качестве основы в слоистых пла­стиках используют гетинакс , представ­ляющий собой спрессованные слои электроизоляционной бумаги, пропи­танные фенольной смолой, стеклотекстолиты – спрессованные слои стекло­ткани, пропитанные эпоксифенольнои смолой, и другие материалы (табл. 2.1).

Табл.2.1. Основные материалы для изготовления плат.

Материал Марка Толщина Область применения
Фольги, мкм Материала, мм
Гетинакс: фольгированный огнестойкий влагостойкий Стеклотекстолит: фольгированный огнестойкий теплостойкий травящийся с адгезионным слоем с тонкой фольгой Фольгированный диэлектрик: тонкий для МПП для микроэлектроники Стеклоткань прокладочная Лавсан фольгированный Фторопласт: фольгированный армированный Полиамид фольгированный Сталь эмалированная Алюминий анодированный Керамика алюмооксидная ГФ-1(2) ГПФ-2-50Г ГОФВ-2-35 СФ-1(2) СФО-1(2) СТФ-1(2) ФТС-1(2) СТЭК СТПА-1 ФДП-1 ФДМ-1(2) ФДМЭ-1(2) СП-1-0,0025 ЛФ-1 ЛФ-2 ФФ-4 ФАФ-4Д ПФ-1 ПФ-2 – – – 35, 50 35, 50 18, 35 18, 35 – – – – – 1-3 1-3 1-3 0,8-3 0,9-3 0,1-3 0,08-0,5 1,0-1,5 0,1-3 0,5 0,2-0,35 0,1-0,3 0,0025 0,05 0,1 1,5-3 0,5-3 0,05 0,1 1-5 0,5-3 2-4 ОПП ДПП ДПП ОПП, ДПП ОПП, ДПП ОПП, ДПП МПП, ДПП ДПП ОПП, ДПП МПП МПП МПП МПП ГПП ГПП ДПП ГПП ГПП ГПП ДПП ДПП, ГИМС ДПП, МПП

Гетинакс, обладая удовлетворитель­ными электроизоляционными свойст­вами в нормальных климатических условиях, хорошей обрабатываемо­стью и низкой стоимостью, нашел применение в производстве бытовой РЭА. Для ПП, эксплуатируемых в сложных климатических условиях с широким диапазоном рабочих темпе­ратур (– 60...+180°С) в составе элек­тронно-вычислительной аппаратуры, техники связи, измерительной техни­ки, применяют более дорогие стекло текстолиты. Они отличаются широ­ким диапазоном рабочих температур, низким (0,2 – 0,8 %) водопоглощением, высокими значениями объемного и поверхностного сопротивлений, стой­костью к короблению. Недостатки– возможность отслаивания фольги при термоударах, наволакивание смолы при сверлении отверстий. Повышение огнестойкости диэлектриков (ГПФ, ГПФВ, СПНФ, СТНФ), используемых в блоках питания, достигается введе­нием в их состав антипиренов (напри­мер, тетрабромдифенилпропана).

Для изготовления фольгированных диэлектриков используется в основном электролитическая медная фольга, од­на сторона которой должна иметь гладкую поверхность (не ниже вось­мого класса чистоты) для обеспечения точного воспроизведения печатной схе­мы, а другая должна быть шерохова­той с высотой микронеровностей не менее 3 мкм для хорошей адгезии к диэлектрику. Для этого фольгу под­вергают оксидированию электрохимическим путем в растворе едкого натра. Фольгирование диэлектриков осуще­ствляют прессованием при температу­ре 160 – 180°С и давлении 5 –15 МПа.

Керамические материалы характери­зуются высокой механической проч­ностью, которая незначительно изме­няется в диапазоне температур 20–700°С, стабильностью электрических и геометрических параметров, низки­ми (до 0,2%) водопоглощением и газовыделением при нагреве в вакууме, однако являются хрупкими и имеют высокую стоимость.

В качестве металлической основы плат используют сталь и алюминий. На стальных основаниях изолирова­ние токоподводящих участков осуще­ствляют с помощью специальных эма­лей, в состав которых входят оксиды магния, кальция, кремния, бора, алю­миния или их смеси, связка (поливинилхлорид, поливинилацетат или метилметакрилат) и пластификатор. Пленку наносят на основание путем прокатки между вальцами с последующим вжиганием. Изолирующий слой толщиной от нескольких десятков до сотен микрометров с сопротивлением изоляции 10 2 – 10 3 МОм на поверхно­сти алюминия получают анодным ок­сидированием. Теплопроводность ано­дированного алюминия 200 Вт/(м·К), а стали – 40 Вт/(м·К). В качестве основы для ПП СВЧ-диапазона используют неполярные (фто­ропласт, полиэтилен, полипропилен) и полярные (полистирол, полифениленоксид) полимеры. Для изготовления микроплат и микросборок СВЧ-диапазона применяют также керамиче­ские материалы, имеющие стабильные электрические характеристики и гео­метрические параметры.

Полиамидная пленка используется для изготовления гибких плат, обла­дающих высокой прочностью на рас­тяжение, химической стойкостью, не­сгораемостью. Она имеет наиболее высокую среди полимеров темпера­турную устойчивость, так как не теря­ет гибкости от температур жидкого азота до температур эвтектической пайки кремния с золотом (400°С). Кроме того, она характеризуется низ­ким газовыделением в вакууме, радиа­ционной стойкостью, отсутствием на­волакивания при сверлении. Недос­татки – повышенное водопоглощение и высокая стоимость.

Формирование рисунка схемы.

Нанесение рисунка схемы или за­щитного рельефа требуемой конфигу­рации необходимо при осуществлении процессов металлизации и травления. Рисунок должен иметь четкие грани­цы с точным воспроизведением тон­ких линий, быть стойким к травиль­ным растворам, не загрязнять платы и электролиты, легко сниматься после выполнения своих функций. Перенос рисунка печатного монтажа на фольгированный диэлектрик осуществляют методами сеткографии, офсетной пе­чати и фотопечати. Выбор метода за­висит от конструкции платы, требуе­мой точности и плотности монтажа, серийности производства.

Сеткографический метод нанесения рисунка схемы наиболее рентабелен для массового и крупносерийного производства плат при минимальной ширине проводников и расстоянии между ними > 0,5 мм, точность вос­произведения изображения ±0,1 мм. Суть заключается в нанесении на пла­ту специальной кислотостойкой крас­ки путем продавливания ее резиновой лопаткой (ракелем) через сетчатый трафарет, в котором необходимый ри­сунок образован открытыми ячейками сетки (рис. 2.4).

Для изготовления трафарета ис­пользуют металлические сетки из не­ржавеющей стали с толщиной прово­локи 30–50 мкм и частотой плетения 60–160 нитей на 1 см, металлизиро­ванного нейлонового волокна, имею­щего лучшую эластичность, с толщи­ной нити 40 мкм и частотой плетения до 200 нитей на 1 см, а также из по­лиэфирных волокон и капрона

Од­ним из недостатков сеток является их растяжение при многократном использовании. Самой большой стойкостью обладают сетки из нержавеющей стали (до 20 тыс. отпечатков), метал­лизированных пластмасс (12 тыс.), по­лиэфирных волокон (до 10 тыс.), ка­прона (5 тыс.).

Рис. 2.4. Принцип трафаретной печати.

1 – ракель; 2 – трафарет; 3 – краска; 4 – основание.

Изображение на сетке получают с помощью экспонирования жидкого или сухого (пленочного) фоторезиста, после проявления которого образуют­ся открытые (свободные от рисунка) ячейки сетки. Трафарет в сеткографи­ческой раме устанавливают с зазором 0,5–2 мм от поверхности платы так, чтобы контакт сетки с поверхностью платы был только в зоне нажатия на сетку ракелем. Ракель представляет собой прямоугольную заточенную по­лосу резины, установленную по отно­шению к подложке под углом 60–70°.

Для получения рисунка ПП исполь­зуют термоотверждающиеся краски СТ 3.5;

СТ 3.12, которые сушат либо в термошкафу при температуре 60°С в течение 40 мин, либо на воздухе в те­чение 6 ч, что удлиняет процесс сеткографии. Более технологичными яв­ляются фотополимерные композиции ЭП-918 и ФКП-ТЗ с ультрафиолетовым отверждением в течение 10–15с, что является решающим фактором при автоматиза­ции процесса. При однократном на­несении покрытие зеленого цвета имеет толщину 15–25 мкм, воспроиз­водит рисунок с шириной линий и за­зорами до 0,25 мм, выдерживает погружение в расплав припоя ПОС-61 при температуре 260°С до 10 с, воз­действие спиртобензиновой смеси до 5 мин и термоциклирование в интер­вале температур от – 60 до +120 °С. После нанесения рисунка плату про­сушивают при температуре 60 °С в те­чение 5–8 мин, контролируют качест­во и при необходимости подвергают ретуши. Удаление защитной маски после травления или металлизации осуществляют химическим методом в 5 %-м растворе едкого натра в течение 10–20 с.

Табл. 2.2. Оборудование для трафаретной печати.

Для трафаретной печати использу­ют полуавтоматическое и автоматиче­ское оборудование, отличающееся фор­матом печати и производительностью (табл. 2.2). Автоматические линии тра­фаретной печати фирм Chemcut (США), Resco (Италия) имеют авто­матические системы подачи и уста­новки плат, движения ракеля и пода­чи резиста. Для сушки резиста приме­няют ИК-печитуннельного типа.

Офсетная печать применяется для крупносерийного производства ПП при малой номенклатуре схем. Разре­шающая способность 0,5–1 мм, точ­ность получаемого изображения со­ставляет ±0,2 мм. Суть метода в том, что в клише, несущее изображение схемы (печатные проводники, кон­тактные площадки), закатывается краска. Затем она снимается офсетным валиком, покрытым резиной, пе­реносится, на изоляционное основание и подвергается сушке. Клише и осно­вание платы располагаются друг за другом на основании машины для оф­сетной печати (рис. 2.5)

Рис.2.5. Схема офсетной печати.

1 – офсетный валик; 2 – клише; 3 – плата;

4 – валик для нанесения краски; 5 – прижимной валик.

Точность печати и резкость конту­ров определяются параллельностью валика и основания, типом и конси­стенцией краски. С помощью одного клише можно выполнить неограни­ченное число оттисков. Производи­тельность метода ограничена длитель­ностью колебательного цикла (нанесе­ние краски – перенос) и не превыша­ет 200–300 оттисков в час. Недостат­ки метода: длительность процесса изготовления клише, сложность измене­ния рисунка схемы, трудность получе­ния беспористых слоев, высокая стои­мость оборудования.

Фотографический метод нанесения рисунка позволяет получать минималь­ную ширину проводников и расстоя­ния между ними 0,1–0,15 мм с точ­ностью воспроизведения до 0,01 мм. С экономической точки зрения этот способ менее рентабельный, но по­зволяет получать максимальную раз­решающую способность рисунка и по­этому применяется в мелкосерийном и серийном производстве при изго­товлении плат высокой плотности и точности. Способ основан на исполь­зовании светочувствительных компози­ций, называемых фоторезистами ,ко­торые должны обладать: высокой чув­ствительностью; высокой разрешаю­щей способностью; однородным по всей поверхности беспористым слоем с высокой адгезией к материалу пла­ты; устойчивостью к химическим воз­действиям; простотой приготовления, надежностью и безопасностью приме­нения.

Фоторезисты разделяются на нега­тивные и позитивные. Негативные фоторезисты под действием излучения образуют защитные участки рельефа в результате фотополимеризации и задубливания. Освещенные участки пе­рестают растворяться и остаются на поверхности подложки. Позитивные фо­торезисты передают рисунок фото­шаблона без изменений. При световой обработке экспонированные участки разрушаются и вымываются.

Для получения рисунка схемы при использовании негативного фоторезиста экспонирование производят через негатив, позитивного – через пози­тив. Позитивные фоторезисты имеют более высокую разрешающую способ­ность, что объясняется различиями в поглощении излучения фоточувстви­тельным слоем. На разрешающую спо­собность слоя влияют дифракционное огибание света на краю непрозрачно­го элемента шаблона и отражение све­та от подложки (рис. 2.6, а).

Рис.2.6. Экспонирование светочувствительного слоя:

а – экспонирование; б – негативный фоторезист; в – позитивный фоторезист;

1 –дифракция; 2 –рассеяние; 3 –отражение; 4 –шаблон; 5 – резист; 6 – подложка.

В негативном фоторезисте дифрак­ция не играет заметной роли, по­скольку шаблон плотно прижат к резисту, но в результате отражения во­круг защитных участков появляется ореол, который снижает разрешаю­щую способность (рис. 2.6, б). В слое позитивного резиста под влиянием дифракции разрушится и вымоется при проявлении только верхняя об­ласть резиста под непрозрачными уча­стками фотошаблона, что мало ска­жется на защитных свойствах слоя. Свет, отраженный от подложки, может вызвать некоторое разрушение прилегающей к ней области, но про­явитель эту область не вымывает, так как под действием адгезионных сил слой опустится вниз, вновь образуя четкий край изображения без ореола (рис. 2.6, в).

В настоящее время в промышлен­ности используются жидкие и сухие (пленочные) фоторезисты. Жидкие фоторезисты – коллоидные растворы синтетических полимеров, в частности поливинилового спирта (ПВС). Наличие гидроксильной груп­пы ОН в каждом звене цепи опреде­ляет высокую гигроскопичность и по­лярность поливинилового спирта. При добавлении к водному раствору ПВС бихромата аммония происходит «очув­ствление» последнего. Фоторезист на основе ПВС наносят на предваритель­но подготовленную поверхность пла­ты путем окунания заготовки, поли­вом с последующим центрифугирова­нием. Затем слои фоторезиста сушат в термошкафу с циркуляцией воздуха при температуре 40°С в течение 30–40 мин. После экспонирования осу­ществляется проявление фоторезиста в теплой воде. Для повышения хими­ческой стойкости фоторезиста на ос­нове ПВС применяют химическое дубление рисунка ПП в растворе хромового ангидрида, а затем термиче­ское дубление при температуре 120°С в течение 45–50 мин. Раздубливание (снятие) фоторезиста проводят в тече­ние 3–6 с в растворе следующего состава:

– 200–250 г/л щавелевой кисло­ты,

– 50–80 г/л хлористого натрия,

– до 1000 мл воды при температуре 20 °С.

Достоинства фоторезиста на основе ПВС – низкие токсичность и пожароопасность, проявление с помощью воды. К недостаткам его относят эф­фект темнового дубления (поэтому срок хранения заготовок с нанесен­ным фоторезистом не должен превы­шать 3–6 ч), низкую кислото- и щелочеустойчивость, трудность автома­тизации процесса получения рисунка, трудоемкость приготовления фоторезиста, низкую чувствительность.

Улучшение свойств жидких фоторе­зистов (устранение дубления, повы­шение кислотостойкости) достигается в фоторезисте на основе циннамата. Светочувствительным компонентом фо­торезиста этого типа является поливинилциннамат (ПВЦ) – продукт взаи­модействия поливинилового спирта и хлорангидрида коричной кислоты. Разрешающая способность его при­мерно 500 лин/мм, проявление осуще­ствляется в органических растворите­лях – трихлорэтане, толуоле, хлор­бензоле. Для интенсификации про­цесса проявления и удаления фоторе­зиста ПВЦ используют ультразвуко­вые колебания. Диффузия в УЗ-поле сильно ускоряется за счет акустиче­ских микропотоков, а образующиеся кавитационные пузырьки при захло­пывании отрывают участки фоторези­ста от платы. Время проявления со­кращается до 10 с, т. е. в 5–8 раз по сравнению с обычной технологией. К недостаткам фоторезиста ПВЦ от­носятся его высокая стоимость, ис­пользование токсичных органических растворителей. Поэтому резисты ПВЦ не нашли широкого применения в изготовлении ПП, а используются глав­ным образом при изготовлении ИМС.

Фоторезисты на основе диазосоединений применяют в основном как по­зитивные. Светочувствительность диазосоединений обусловлена наличием в них групп, состоящих из двух атомов азота N 2 (рис. 2.7).

Рис.2.7. Молекулярные связи в структуре диазосоединений.

Сушка слоя фото­резиста проводится в две стадии:

– при температуре 20°С в течение 15–20 мин для испарения легколетучих компо­нентов;

– в термостате с циркуляцией воздуха при температуре 80 °С в те­чение 30–40 мин.

Проявителями яв­ляются растворы тринатрийфосфата, соды, слабых щелочей. Фоторезисты ФП-383, ФН-11 на основе диазосоединений имеют разрешающую способ­ность 350–400 лин/мм, высокую хи­мическую стойкость, однако стои­мость их высока.

Сухие пленочные фоторезисты марки Riston впервые разработаны в 1968 г. фирмой Du Pont (США) и имеют тол­щину 18 мкм (красный цвет), 45 мкм (голубой) и 72 мкм (рубиновый). Су­хой пленочный фоторезист марки СПФ-2 выпускается с 1975 г. толщи­ной 20, 40 и 60 мкм и представляет собой полимер на основе полиметилметакрилата 2 (рис.2.8), расположен­ный между полиэтиленовой 3 и лавса­новой / пленками толщиной 25 мкм каждая.

Рис.2.8. Структура сухого фоторезиста.

В СНГ выпускаются следующие типы сухих пленочных фоторезистов:

– проявляемые в органических веще­ствах – СПФ-2, СПФ-АС-1, СРФ-П;

– водно-щелочные – СПФ-ВЩ2, ТФПК;

– повышенной надежности – СПФ-ПНЩ;

– защитные – СПФ-З-ВЩ.

Перед накаткой на поверхность ос­нования ПП защитная пленка из по­лиэтилена удаляется и сухой фоторе­зист наносится на плату валиковым методом (плакирование, ламинирова­ние) при нагреве до 100°С со скоро­стью до 1 м/мин с помощью специ­ального устройства, называемого ла­минатором. Сухой резист полимеризуется под действием ультрафиолетового излучения, максимум его спектраль­ной чувствительности находится в об­ласти 350 нм, поэтому для экспониро­вания используют ртутные лампы. Проявление осуществляется в маши­нах струйного типа в растворах метилхлорида, диметилформамида.

СПФ-2 – сухой пленочный фоторе­зист, аналогичный по свойствам фото­резисту Riston, допускает обработку как в кислых, так и в щелочных сре­дах и используется при всех методах изготовления ДПП. При его примене­нии необходима герметизация обору­дования для проявления. СПФ-ВЩ обладает более высокой разрешающей способностью (100–150 линий/мм), стоек в кислой среде, обрабатывается в щелочных растворах. В состав фото­резиста ТФПК (в полимеризующую композицию) входит метакриловая ки­слота, улучшающая эксплуатационные характеристики. Для него не требуется термообработка защитного рельефа перед нанесением гальванопокрытия. СПФ-АС-1 позволяет получать рису­нок ПП как по субтрактивной, так и по аддитивной технологии, поскольку он стоек и в кислых, и в щелочных средах. Для улучшения адгезии свето­чувствительного слоя к медной под­ложке в состав композиции введен бензотриазол.

Применение сухого фоторезиста зна­чительно упрощает процесс изготовле­ния ПП, увеличивает процент выхода годных изделий с 60 до 90 %. При этом:

– исключаются операции сушки, дубления и ретуширования, а также за­грязнения, нестабильность слоев;

– обес­печивается защита металлизированных отверстий от затекания фоторезиста;

– достигается высокая автоматизация и механизация процесса изготовления ПП и контроля изображения.

Установка для нанесения сухого пленочного фоторезиста – ламинатор (рис.2.9) состоит из валиков 2, по­дающих плату 6 и прижимающих фо­торезист к поверхности заготовок, ва­ликов 3 и 4 для снятия защитной по­лиэтиленовой пленки, бобины с фоторезистом 5, нагревателя 1 с терморегу­лятором.

Рис.2.9. Схема ламинатора.

Скорость движения заготов­ки платы достигает 0,1 м/с, температу­ра нагревателя (105 ±5) °С. Конструкция установки АРСМ 3.289.006 НПО «Ратон» (Беларусь) обеспечивает постоянное усилие прижатия независи­мо от зазора, устанавливаемого между валиками-нагревателями. Максималь­ная ширина заготовки ПП 560 мм. Особенностью накатывания является опасность попадания пыли под слой фоторезиста, поэтому установка долж­на работать в гермозоне. Накатанная пленка фоторезиста выдерживается не менее 30 мин перед экспонированием для завершения усадочных процессов, которые могут вызвать искажение ри­сунка и уменьшить адгезию.

Проявление рисунка осуществляет­ся в результате химического и механи­ческого воздействия метилхлороформа. За оптимальное время проявления принимается время, в 1,5 раза боль­шее, чем необходимо для полного удаления незадубленного СПФ. Каче­ство операции проявления зависит от пяти факторов: времени проявления, температуры проявления, давления проявителя в камере, загрязнения про­яви геля, степени окончательной про­мывки. По мере накопления в прояви­теле растворенного фоторезиста ско­рость проявления замедляется. После проявления плату необходимо отмыть водой до полного удаления остатков растворителя. Продолжительность опе­рации проявления СПФ-2 при темпе­ратуре проявителя 14–18°С, давлении раствора в камерах 0,15МПа и скоро­сти движения конвейера 2,2 м/мин со­ставляет 40–42 с.

Удаление и проявление фоторезиста осуществляется в машинах струйного типа (ГГМЗ.254.001, АРСМЗ.249.000) в хлористом метилене. Это сильный растворитель, поэтому операция сня­тия фоторезиста должна выполняться быстро (за 20–30 с). В установках пре­дусматривается замкнутый цикл ис­пользования растворителей, после оро­шения плат растворители поступают в дистиллятор, а затем чистые раствори­тели переключаются на повторное ис­пользование.

Экспонирование фоторезиста пред­назначено для инициирования в нем фотохимических реакций и проводит­ся в установках, имеющих источники света (сканирующие или неподвиж­ные) и работающие в ультрафиолето­вой области. Для плотного прилега­ния фотошаблонов к заготовкам плат используют рамы, где создается раз­режение. Установка экспонирования СКЦИ.442152.0001 НПО «Ратон» при рабочем поле загрузочных рам 600×600 мм обеспечивает производитель­ность 15 плат/ч. Время экспозиции ртутной лампой ДРШ-1000 1–5 мин. После экспонирования для заверше­ния темновой фотохимической реак­ции необходима выдержка при ком­натной температуре в течение 30 мин перед удалением лавсановой защит­ной пленки.

Недостатки сухого фоторезиста – не­обходимость приложения механическо­го усилия при накатке, что недопусти­мо для ситалловых подложек, пробле­ма утилизации твердых и жидких от­ходов. На каждые 1000 м 2 материала образуется до 40 кг твердых и 21 кг жидких отходов, утилизация которых является экологической проблемой.

Для получения проводящего рисун­ка на изоляционном основании как сеткографическим, так и фотохимиче­ским способом необходимо применять фотошаблоны, представляющие собой графическое изображение рисунка в масштабе 1:1 на фотопластинках или фотопленке. Фотошаблоны выполня­ют в позитивном изображении при наращивании проводящих участков на лентах и в негативном изображении, когда проводящие участки получают травлением меди с пробельных мест.

Геометрическая точность и качество рисунка ПП обеспечиваются в первую очередь точностью и качеством фото­шаблона, который должен иметь:

– контрастное черно-белое изображе­ние элементов с четкими и ровными границами при оптической плотности черных полей не менее 2,5 ед., прозрачных участков не более 0,2 ед., измеренной на денситомере типа ДФЭ-10;

– минимальные дефекты изображения (темные точки на пробельных местах, прозрачные точки на черных полях), которые не превышают 10–30 мкм;

– точность элементов выполнения рисунка ±0,025 мм.

В большей степени перечисленным требованиям удовлетворяют сверхкон­трастные фотопластинки и пленки «Микрат-Н» (СССР), фотопластинки типа ФТ-41П (СССР), РТ-100 (Япо­ния) и Agfalit (Германия).

В настоящее время применяются два основных способа получения фо­тошаблонов: фотографирование их с фотооригиналов и вычерчивание све­товым лучом на фотопленке с помо­щью координатографов с программ­ным управлением либо лазерным лу­чом. При изготовлении фотооригина­лов рисунок ПП выполняют в увели­ченном масштабе (10:1, 4:1, 2:1) на малоусадочном материале путем вы­черчивания, изготовления аппликаций или резания по эмали. Способ аппли­кации предусматривает наклеивание заранее подготовленных стандартных элементов на прозрачную основу (лав­сан, стекло и др.). Первый способ ха­рактеризуется низкой точностью и большой трудоемкостью, поэтому используется в основном для макетных образцов плат.

Резание по эмали применяют для ПП с высокой плотностью монтажа. Для этого полированное листовое стекло покрывают непрозрачным сло­ем эмали, а вырезание рисунка схемы осуществляют на координатографе с ручным управлением. Точность полу­чения рисунка 0,03–0,05 мм.

Изготовленный фотооригинал фо­тографируют с необходимым умень­шением на высококонтрастную фотопластину с помощью фоторепродук­ционных полиграфических камер типа ПП-12, ЭМ-513, Klimsch (Германия) и получают фотошаблоны, которые могут быть контрольными и рабочи­ми. Для тиражирования и изготовле­ния рабочих, одиночных, а также групповых фотошаблонов применяют метод контактной печати с негатив­ной копии контрольного фотошабло­на. Операция выполняется на мульти­пликаторе модели АРСМ 3.843.000 с точностью ±0,02 мм.

Недостатки такого метода – боль­шая трудоемкость получения фото­оригинала, требующего высококвали­фицированного труда, и трудность равномерного освещения фотоориги­налов значительной площади, что снижает качество фотошаблонов.

Возрастающая сложность и плот­ность рисунка ПП, необходимость увеличения производительности труда привели к разработке метода изготов­ления фотошаблонов сканирующим лучом непосредственно на фотоплен­ке. Для изготовления фотошаблона световым лучом разработаны коорди­натографы с программным управлени­ем. С переходом на машинное проек­тирование плат необходимость вычер­чивания чертежа отпадает, так как по­лученная с ЭВМ перфолента с коор­динатами проводников вводится в считывающее устройство координато­графа, на котором автоматически вы­полняется фотошаблон.

Координатограф (рис. 2.10) состоит из вакуумного стола 8, на котором за­крепляют фотопленку, фотоголовки и блока управления /. Стол перемеща­ется с высокой точностью в двух вза­имно перпендикулярных направлени­ях с помощью прецизионных ходовых винтов 9 и 3, которые приводятся во вращение шаговыми двигателями 2 и 10. Фотоголовка включает осветитель 4, фокусирующую систему 5, круговую диафрагму 6 и фотозатвор 7. Диа­фрагма имеет набор отверстий (25– 70), оформляющих определенный эле­мент рисунка ПП, и закрепляется на валу шагового двигателя. В соответст­вии с программой работы сигналы от блока управления подаются на шаго­вые двигатели привода стола, диа­фрагмы и на осветитель. Современные координатографы (табл. 5.4) снабжа­ются системами автоматического под­держания постоянного светового ре­жима, вывода из ЭВМ информации о фотошаблонах на пленку в масштабах 1:2; 1:1; 2:1; 4:1.

Рис. 5.10. Схема координатографа.

Качество поставляемых материалов соответствует стандарту IPC4101B, система управления качеством производителей подтверждена международными сертификатами ISO 9001:2000.

FR 4 – стеклотекстолит класса огнестойкости 94V-0 - является наиболее распространенным материалом для производства печатных плат. Наша компания поставляет следующие виды материалов для производства одно-, и двусторонних печатных плат :

  • Стеклотекстолит FR4 с температурой стеклования 135ºС , 140ºС и 170ºС для производства односторонних и двухсторонних печатных плат. Толщиной 0,5 - 3,0 мм с фольгой 12, 18, 35, 70, 105 мкм.
  • Базовый FR4 для внутренних слоев МПП с температурой стеклования 135ºС, 140ºС и 170ºС
  • Препреги FR4 с температурой стеклования 135ºС, 140ºС и 170ºС для прессования МПП
  • Материалы XPC , FR1 , FR2 , CEM-1 , CEM-3 , НА-50
  • Материалы для плат с контролируемым отводом тепла:
    • (алюминий, медь, нержавеющая сталь) с диэлектриком теплопроводностью от 1 Вт/м*К до 3 Вт/м*К производства Totking и Zhejiang Huazheng New Material Co.
    • Материал HA-30 CEM-3 с теплопроводностью 1 Вт/м*К для производства одно- и двухсторонних печатных плат.

Для некоторых целей бывает необходим высококачественный нефольгированный диэлектрик, обладающий всеми достоинствами FR4 (хорошие диэлектрические свойства, стабильность характеристик и размеров, высокая устойчивость к воздействию неблагоприятных климатических условий). Для этих применений мы можем предложить нефольгированный стеклотекстолит FR4 .

Во многих случаях, где требуются достаточно простые печатные платы (при производстве бытовой аппаратуры, различных датчиков, некоторых комплектующих к автомобилям и т.п.) превосходные свойства стеклотекстолита оказываются избыточными, и на первый план выходят показатели технологичности и стоимости. Здесь мы можем предложить следующие материалы:

  • XPC , FR1 , FR2 - фольгированные гетинаксы (основа из целлюлозной бумаги, пропитанной фенольной смолой), широко применяется при изготовлении печатных плат для бытовой электроники, аудио-, видео техники, в автомобилестроении (расположены в порядке возрастания показателей свойств, и, соответственно, цены). Прекрасно штампуются.
  • CEM-1 - ламинат на основе композиции целлюлозной бумаги и стеклоткани с эпоксидной смолой. Прекрасно штампуется.

Также в нашем ассортименте есть электроосажденная медная фольга для прессования МПП производства Kingboard. Фольга поставляется в рулонах различной ширины, толщина фольги 12, 18, 35, 70, 105 мкм, фольга толщиной 18 и 35 мкм практически всегда доступна с нашего склада в России.

Все материалы произведены в соответствии с директивой RoHS, содержание вредных веществ подтверждено соответствующими сертификатами и RoHS тест-репортами. Также все материалы, на многие позиции имеются сертификаты, и др.