Главная · Сети · Современные большепролетные здания и сооружения. Большепролетные конструкции покрытий гражданских и промышленных зданий. Стены из крупных панелей

Современные большепролетные здания и сооружения. Большепролетные конструкции покрытий гражданских и промышленных зданий. Стены из крупных панелей

Плоскостные конструкции

а

ЛЕКЦИЯ 7. КОНСТРУКТИВНЫЕ СИСТЕМЫ И КОНСТРУКТИВНЫЕ ЭЛЕМЕНТЫ ПРОИЗВОДСТВЕННЫХ ЗДАНИЙ

Каркасы промышленных зданий

Стальной каркас одноэтажных зданий

Стальной каркас одноэтажных зданий состоит из тех же элементов, что и железобетонный (рис.)

Рис. Стальной каркас здания

В стальных колоннах различают две основные части: стержень (ветвь) и базу (башмак) (рис.73) .

Рис. 73. Стальные колонны.

а – постоянного сечения с консолью; б – раздельного типа.

1 – подкрановая часть колонны; 2 – надколонник, 3 – добавочная высота надколонника; 4 – шатровая ветвь; 5 – подкрановая ветвь; 6 – башмак; 7 – подкрановая балка; 8 – подкрановый рельс; 9 – ферма покрытия.

Башмаки служат для передачи нагрузки от колонны на фундамент. Башмаки и нижние части колонн, соприкасающиеся с землей, во избежание коррозии обетонивают. Для опирания стен между фундаментами крайних колонн устанавливают сборные железобетонные фундаментные балки.

Стальные подкрановые балки бывают сплошные и решетчатые. Наибольшее применение получили сплошные подкрановые балки, имеющие двутавровое сечение: несимметричное, применяемые при шаге колонн 6 метров, или симметричное при шаге 12 метров.

Основными несущими конструкциями покрытий в зданиях со стальным каркасом являются стропильные фермы (рис. 74).

Рис. 74. Стальные фермы:

а – с параллельными поясами; б – то же; в – треугольная; г – полигональная;

д – конструкция полигональной фермы.

По очертанию они могут быть с параллельными поясами, треугольные, полигональные.

Фермы с параллельными поясами применяют в зданиях с плоскими крышами, а также в качестве подстропильных.

Треугольные фермы применяют в зданиях с кровлями, требующими больших уклонов, например из асбоцементных листов.

Жесткость стального каркаса и восприятие им ветровых нагрузок и инерционных воздействий от кранов обеспечивается устройством связей. Между колоннами в продольных рядах ставят вертикальные связи – крестовые или портальные. Горизонтальные поперечные связи ставят в плоскостях верхнего и нижнего поясов, а вертикальные – по осям опорных стоек и в одной или нескольких плоскостях посередине пролета.

Деформационные швы

В каркасных зданиях деформационные швы расчленяют на отдельные участки каркас здания и все опирающиеся на него конструкции. Различают швы поперечные и продольные.

Поперечные температурные швы устраивают на спаренных колоннах, поддерживающих конструкции смежных, разрезанных швом, участков здания. Если шов является одновременно осадочным, то он устраивается и в фундаментах спаренных колонн.

В одноэтажных зданиях ось поперечного деформационного шва совмещают с поперечной разбивочной осью ряда. Так же решают деформационные швы в перекрытиях многоэтажных зданий.

Продольные температурные швы в зданиях с железобетонным каркасом решают на двух продольных рядах колонн, а в зданиях со стальным каркасом – на одном ряде колонн.

Стены промышленных зданий

В зданиях бескаркасных и с неполным каркасом наружные стены являются несущими и выполняются из кирпича, крупных блоков или других камней. В зданиях с полным каркасом стены выполняют из тех же материалов самонесущими по фундаментным балкам или панельными – самонесущими или навесными. Наружные стены располагают с внешней стороны колонн, внутренние стены зданий опирают на фундаментные балки или на ленточные фундаменты.

В каркасных зданиях при значительной протяженности и высоте стен для обеспечения устойчивости между элементами основного каркаса вводят дополнительные стойки, иногда ригели, образующие вспомогательный каркас, называемый фахверком .

При наружном водостоке с покрытий продольные стены промышленных зданий выполняют с карнизами, а торцовые – с парапетными стенками. При внутреннем водоотводе парапеты возводят по всему периметру здания.

Стены из крупных панелей

Железобетонные ребристые панели предназначаются для неотапливаемых зданий и зданий с большими производственными тепловыделениями. Толщина стенки 30 миллиметров.

Панели для отапливаемых зданий применяют железобетонные утепленные или из легких ячеистых бетонов. Железобетонные утепленные панели имеют толщину 280 и 300 миллиметров.

Панели разделяются на рядовые (для глухих стен), панели-перемычки (для установки сверху и снизу оконных проемов) и парапетные.

На рис. 79 показан фрагмент стены каркасного панельного здания с ленточным остеклением.

Рис. 79. Фрагмент стены из крупных панелей

Заполнение оконных проемов панельных зданий производится преимущественно в виде ленточного остекления. Высота проемов принимается кратной 1,2 метров, ширина – равной шагу пристенных колонн.

При отдельных оконных проемах меньшей ширины применяются простеночные панели с размерами 0,75, 1,5, 3,0 метра в соответствии с размерами стандартных переплетов.

Окна, двери, ворота, фонари

Фонари

Для обеспечения освещения удаленных от окон рабочих мест и для аэрации (вентиляции) помещений в промышленных зданиях устраивают фонари.

Фонари бывают световые, аэрационные и смешанного типа:

Световые с глухими остекленными переплетами, служащие только для освещения помещений;

Светоаэрационные с открывающимися остекленными створками, служащие для освещения и проветривания помещений;

Аэрационные без остекления, применяемые только для целей аэрации.

Фонари могут быть различного профиля с вертикальным, наклонным или горизонтальным остеклением.

По профилю фонари бывают прямоугольные с вертикальным остеклением, трапециедальные и треугольные с наклонным остеклением, зубчатые с односторонним вертикальным остеклением. В промышленном строительстве обычно применяют прямоугольные фонари. (рис. 83).

Рис. 83. Основные схемы световых и светоаэрационных фонарей:

а – прямоугольный; б – трапециевидный; в – зубчатый; г – треугольный.

По расположению относительно оси здания различают фонари продольные и поперечные. Наибольшее распространение получили продольные фонари.

Отвод воды с фонарей бывает наружный и внутренний. Наружный применяют при фонарях шириной 6 метров или при отсутствии в здании внутреннего водоотвода.

Конструкция фонарей является каркасной и состоит из ряда поперечных рам, опирающихся на верхние пояса ферм или балок покрытия, и системы продольных связей. Конструктивные схемы фонарей и их параметры унифицированы. Для пролетов 12, 15, и 18 метров применяют фонари шириной 6 метров, для пролетов 24, 30 и 36 метров – шириной 12 метров. Ограждение фонаря состоит из покрытия, боковых и торцовых стенок.

Фонарные переплеты изготавливают стальными длиной 6000 миллиметров и высотой 1250, 1500 и 1750 миллиметров. Переплеты остекляют армированным или оконным стеклом.

Аэрацией называют естественный, управляемый и регулируемый воздухообмен.

Действие аэрации основывается:

На тепловом подпоре, возникающем вследствие разности температур внутреннего и наружного воздуха;

На высотном перепаде (разности центров вытяжных и приточных отверстий);

На действии ветра, который обдувая здание, создает на подветренной стороне разрежение воздуха (рис. 84).

Рис. 84. Схемы аэрации зданий:

а – действие аэрации при отсутствии ветра; б – то же, при действии ветра.

Недостатком светоаэрационных фонарей является необходимость закрывать переплеты с наветренной стороны, так как может происходить задувание ветром загрязненного воздуха обратно в рабочую зону.

Двери и ворота

Двери промышленных зданий по конструкции не отличаются от щитовых дверей гражданских зданий.

Ворота предназначаются для ввода внутрь здания транспортных средств и пропуска больших масс людей.

Размеры ворот определяются в соответствии с размерами перевозимого оборудования. Они должны превышать габариты подвижного состава в груженом состоянии по ширине на 0,5-1,0 метра, а по высоте – на 0,2 – 0,5 метра.

По способу открывания ворота бывают распашные, раздвижные, подъемные, шторные и т.д.

Распашные ворота состоят из двух полотнищ, навешенных посредством петель в воротной раме (рис. 81). Рама может быть деревянной, стальной или железобетонной.

Рис. 81. Распашные ворота:

1 – стойки железобетонной рамы, обрамляющей проем; 2 – ригель.

При отсутствии места для распахивания полотен ворота делают раздвижными. Раздвижные ворота бывают однопольные и двупольные. Полотна их имеют конструкция подобную распашным, но в верхней части снабжены стальными роликами, которые при открывании и закрывании ворот передвигаются по рельсу, прикрепленную к ригелю железобетонной рамы.

Полотна подъемных ворот – цельнометаллические, подвешены на тросах и двигаются по вертикальным направляющим.

Полотнище шторных ворот состоит из горизонтальных элементов, образующих стальную штору, которая при подъеме навертывается на вращающийся барабан, горизонтально расположенный над верхом проема.

Покрытия

В одноэтажных промышленных зданиях покрытия выполняются бесчердачными, состоящими из основных несущих элементов покрытия и ограждения.

В неотапливаемых зданиях и зданиях с избыточными производственными тепловыделениями ограждающие конструкции покрытий выполняются неутепленными, в отапливаемых зданиях – утепленными.

Конструкция холодного покрытия состоит из основания (настила) и кровли. В утепленное покрытие включают пароизоляцию и утеплитель.

Элементы настила подразделяют на мелкоразмерные (длиной 1,5 – 3,0 метра) и крупноразмерные (длиной 6 и 12 метров).

В ограждениях из мелкоразмерных элементов возникает необходимость применения прогонов, которые располагают вдоль здания по балкам или фермам покрытия.

Крупноразмерные настилы укладывают по основным несущим элементам и покрытия в этом случае называют беспрогонными.

Настилы

Беспрогонные железобетонные настилы выполняются из железобетонных предварительно напряженных ребристых плит шириной 1,5 и 3,0 метра и длиной, равной шагу балок или ферм.

В неутепленных покрытиях по верху плит устраивается цементная стяжка, по которой наклеивают рулонную кровлю.

В утепленных покрытиях в качестве утеплителя применяются малотеплопроводные материалы и устраивается дополнительная пароизоляция. Пароизоляция особенно необходима в покрытиях над помещениями с повышенной влажностью воздуха.

Мелкоразмерные плиты могут быть железобетонными, армоцементными или из армированных легких и ячеистых бетонов.

Рулонные кровли выполняются рубероидными. По верхнему слою рулонных кровель устраивается защитный слой гравия, втопленный в битумную мастику.

Также применяются настилы из листовых материалов.

Одним из таких настилов является стальной оцинкованный профилированный настил, укладываемый на прогонах (при шаге ферм 6 метров) или по решетчатым прогонам (при шаге 12 метров).

Скатные холодные покрытия часто выполняются из асбоцементных волнистых листов усиленного профиля толщиной 8 миллиметров.

Кроме того, применяются листы из волнистого стеклопластика и других синтетических материалов.

Водоотвод с покрытий

Водоотвод продлевает срок эксплуатации здания, предохраняя его от преждевременного старения и разрушения.

Водоотвод с покрытий промышленных зданий может быть наружным и внутренним.

В одноэтажных зданиях наружный водоотвод устраивают неорганизованным, а в многоэтажных – с применением водосточных труб.

Система внутреннего водоотвода состоит из водоприемных воронок и сети расположенных внутри здания труб, отводящих воду в ливневую канализацию (рис. 82).

Рис. 82. Внутренний водоотвод:

а – водоприемная воронка; б – чугунный поддон;

1 – корпус воронки; 2 – крышка; 3 – патрубок; 4 – воротник патрубка; 5 – чугунный поддон; 6 – отверстие для патрубка; 7 – мешковина, пропитанная битумом; 8 – рулонная кровля; 9 – заполнение расплавленным битумом; 10 – железобетонная плита покрытия.

Внутренний водоотвод устраивают:

В многопролетных зданиях с многоскатными крышами;

В зданиях, имеющих большую высоту или значительные перепады высот отдельных пролетов;

в зданиях с большими производственными тепловыделениями, вызывающими подтаивание снега на покрытии.

Полы

Полы в промышленных зданиях выбирают с учетом характера производственных воздействий на них и предъявляемых к ним эксплуатационных требований.

Такими требованиями могут быть: жаростойкость, химическая стойкость, водо- и газонепроницаемость, диэлектричность, неискримость при ударах, повышенная механическая прочность и другие.

Подобрать полы, удовлетворяющие всем необходимым требованиям, иногда бывает невозможно. В таких случаях в пределах одного помещения приходится применять полы различного типа.

Конструкция пола состоит из покрытия (одежды) и подстилающего слоя (подготовки). Кроме того, в конструкцию пола могут входить прослойки различного назначения. Подстилающий слой воспринимает через покрытие передаваемую на полы нагрузку и распределяет ее на основание.

Подстилающие слои бывают жесткие (бетонные, железобетонные, асфальтобетонные) и нежесткие (песчаные, гравийные, щебеночные).

При устройстве полов по междуэтажным перекрытиям основанием служат плиты перекрытий, а подстилающий слой или отсутствует вовсе, или его роль выполняют тепло- и звукоизоляционные слои.

Грунтовые полы применяют в складах и горячих цехах, где они могут подвергаться ударам от падения тяжелых предметов или соприкасаться с раскаленными деталями.

Каменные полы применяют в складах, где возможны значительные ударные нагрузки, или в зонах действия транспорта на гусеничном ходу. Полы эти прочные, но холодные и жесткие. Покрытием таких полов служат обычно брусчатка (рис. 85).

Рис. 85. Каменные полы:

а – булыжные; б – из крупной брусчатки; в – из мелкой брусчатки;

1 – булыжный камень; 2 – песок; 3 – брусчатка; 4 – битумная мастика; 5 – бетон.

Бетонные и цементные полы применяют в помещениях, где пол может подвергаться постоянному увлажнению или действию минеральных масел (рис. 86).

Рис. 86. Бетонные и цементные полы:

1 – бетонная или цементная одежда; 2 – бетонный подстилающий слой.

Асфальтовые и асфальтобетонные полы обладают достаточной прочностью, водостойкостью, водонепроницаемостью, эластичностью, легко ремонтируются (рис. 87). К недостатками асфальтовых полов относят их способность размягчаться при повышении температуры, вследствие чего их не устраивают в горячих цехах. Под действием длительных сосредоточенных нагрузок в них образуются вмятины.

Рис. 87. Асфальтовые и асфальтобетонные полы:

1 – асфальтовая или асфальтобетонная одежда; 2 – бетонный подстилающий слой.

К керамическим полам относятся клинкерные, кирпичные и плиточные полы (рис. 88). Такие полы хорошо сопротивляются действию высокой температуры, стойки против кислот, щелочей и минеральных масел. Их применяют в помещениях, требующих большой чистоты, при отсутствии ударных нагрузок.

Рис. 88. Полы из керамических плиток:

1 – керамическая плитка; 2 – цементный раствор; 3 – бетон.

Металлические полы применяют лишь на отдельных участках, где к полам прикасаются раскаленные предметы и в то же время нужна ровная твердая поверхность и в цехах при сильных ударных нагрузках (рис. 89).

Рис. 89. Металлические полы:

1 – чугунные плитки; 2 – песок; 3 – грунтовое основание.

Так же в промышленных зданиях могут применяться полы дощатые и из синтетических материалов . Применяются такие полы в лабораториях, инженерных корпусах, административных помещениях.

В полах с жестким подстилающим слоем во избежание появления трещин устраивают деформационные швы. Их располагают по линиям деформационных швов здания и в местах сопряжения полов разного типа.

Для прокладки инженерных коммуникаций в полах устраивают каналы.

Примыкание полов к стенам, колоннам и фундаментам станков делают с зазорами для свободной осадки.

В мокрых помещениях для стока жидкостей полам придают рельеф с уклонами по направлению к чугунным или бетонным водоприемникам, которые называются трапами. Трапы соединяют с канализацией. Вдоль стен и колонн необходимо устройство плинтусов и галтелей.

Лестницы

Лестницы промышленных зданий подразделяются на следующие виды:

- основные, применяемые в многоэтажных зданиях для постоянного сообщения между этажами и для эвакуации;

- служебные, ведущие на рабочие площадки и антресоли;

- пожарные наружные , обязательные при высоте здания более 10 метров и предназначенные для подъема на крышу бойцов пожарных команд (рис. 90).

Рис. 90. Пожарная лестница

- аварийные наружные , устраиваемые для эвакуации людей при недостаточном количестве основных лестниц (рис. 91);

Рис. 91. Аварийная лестница

Противопожарные преграды

Классификация зданий и помещений по взрывопожарной и пожарной опасности применяется для установления требования пожарной безопасности, направленных на предотвращение возможности возникновения пожара и обеспечения противопожарной защиты людей и имущества в случае возникновения пожара. По взрывопожарной и пожарной опасности помещения подразделяются на категории А, Б, В1-В4, Г и Д, а здания на категории А, Б, В, Г и Д.

Категории помещений и зданий определяются, исходя из вида находящихся в помещениях горючих веществ и материалов, их количества и пожароопасных свойств, а также, исходя из объемно-планировочных решений помещений и характеристик проводимых в них технологических процессов.

Противопожарные преграды устраивают с целью предотвратить распространение по зданию огня в случае возникновения пожара. Горизонтальными преградами в многоэтажных зданиях служат несгораемые перекрытия. Вертикальными преградами являются противопожарные стены (брандмауэры).

Брандмауэр предназначается для предотвращения распространения пожара из одного помещения или здания в смежное помещение или здание. Брандмауэры выполняются из несгораемых материалов – камня, бетона или железобетона, и должны иметь предел огнестойкости не менее четырех час. Брандмауэры должны опираться на фундаменты. Брандмауэры делаются на всю высоту здания, разделяя сгораемые и трудносгораемые покрытия, перекрытия, фонари и другие конструкции и должны возвышаться над сгораемыми кровлями не менее чем на 60 сантиметров, а над несгораемыми кровлями на 30 сантиметров. Двери, ворота, окна, крышки люков и другие заполнения проемов в брандмауэрах должны быть несгораемыми с пределом огнестойкости не менее 1,5 часа. Брандмауэры рассчитываются на устойчивость в случае одностороннего обрушения при пожаре перекрытий, покрытий и других конструкций (рис. 92).

Рис. 92. Брандмауэры:

а – в здании с несгораемыми наружными стенами; б – в здании со сгораемыми или трудносгораемыми наружными стенами; 1 – гребень брандмауэра; 2 – торцовый брандмауэр.

Контрольные вопросы

1. Назовите конструктивные схемы промышленных зданий.

2. Назовите основные типы каркасов промышленных зданий.

3. Какие существуют виды стен промышленных зданий?

ЛЕКЦИЯ 8 . КОНСТРУКТИВНЫЕ СИСТЕМЫ И КОНСТРУКТИВНЫЕ ЭЛЕМЕНТЫ СЕЛЬСКОХОЗЯЙСТВЕННЫХ ЗДАНИЙ И СООРУЖЕНИЙ

Теплицы и парники

Теплицы и парники представляют собой застекленные сооружения, в которых искусственно создаются нужные климатические и почвенные условия, позволяющие выращивать ранние овощи, рассаду и цветы.

Здания теплиц строят преимущественно из сборных железобетонных остекленных панелей, скрепленных между собой сваркой закладных деталей.

Конструкция парника состоит из сборных железобетонных рам, устанавливаемых в грунт по длине парника и сборных железобетонных парубней (продольный лежень парника), укладываемых на консоли рам. Съемные остекленные парниковые рамы выполняются деревянными (рис. 94).

Рис. 94. Парник из сборных железобетонных элементов:

1 – железобетонные рамы; 2 – железобетонный парубень северный; 3 – то же, южный;

4 – песок; 5 – питательный слой грунта; 6 – отопительные трубы в слое песка;

7 – остекленная деревянная рама.

СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ

1. Маклакова Т. Г., Нанасова С. М. Конструкции гражданских зданий: Учебник. – М.: Издательство АСВ, 2010. – 296 с.

2. Будасов Б. В. , Георгиевский О. В., Каминский В. П. Строительное черчение. Учеб. для вузов / Под общ. ред. О. В. Георгиевского. – М.: Стройиздат, 2002. – 456 с.

3. Ломакин В. А. Основы строительного дела. – М.: Высшая школа, 1976. – 285 с.

4. Красенский В.Е., Федоровский Л.Е. Гражданские, промышленные и сельскохозяйственные здания. – М.: Стройиздат, 1972, – 367 с.

5. Короев Ю. И Черчение для строителей: Учеб. для проф. Учеб. заведений. – 6-е изд., стер. – М.: Высш. шк., Изд. Центр «Академия», 2000ю – 256 с.

6. Чичерин И. И. Общестроительные работы: учебник для нач. проф. Образования. – 6-е изд., стер. – М.: Издательский центр «Академия», 2008. – 416 с.

ЛЕКЦИЯ 6. КОНСТРУКЦИИ БОЛЬШЕПРОЛЕТНЫХ ЗДАНИЙ С ПРОСТРАНСТВЕННЫМИ ПОКРЫТИЯМИ

В зависимости от конструктивной схемы и статической работы несущие конструкции покрытий можно разделить на плоскостные (работающие в одной плоскости) и пространственные.

Плоскостные конструкции

К этой группе несущих конструкций относятся балки, фермы, рамы и арки. Они могут выполняться из сборного и монолитного железобетона, а также металлическими или деревянными.

Балки и фермы совместно с колоннами образуют систему поперечных рам, продольная связь между которыми осуществляется плитами покрытия и ветровыми связями.

Наряду со сборными рамами в ряде зданий уникального характера при повышенных нагрузках и больших пролетах применяют монолитные железобетонные или металлические рамы (рис. 48).

Рис. 48. Большепролетные конструкции:

а - рама железобетонная монолитная двухшарнирная.

Для перекрытия пролетов свыше 40 метров целесообразно использовать арочные конструкции. Арки конструктивно можно разделить на двухшарнирные (имеющие шарниры на опорах), трехшарнирные (с шарнирами на опорах и в середине пролета) и бесшарнирные.

Арка работает в основном на сжатие и передает на опоры не только вертикальную нагрузку, но и горизонтальное давление (распор).

По сравнению с балками, фермами и рамами арки имеют меньший вес и экономичнее по расходу материалов. Арки применяются в конструкциях в сочетании со сводами и оболочками.

КОНСПЕКТ ЛЕКЦИЙ

Макеевка 2011г.

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ, МОЛОДЕЖИ И СПОРТА УКРАИНЫ

ДОНБАССКАЯ НАЦИОНАЛЬНАЯ АКАДЕМИЯ СТРОИТЕЛЬСТВА И АРХИТЕКТУРЫ

Кафедра “Экономика предприятий”

Разработал: к.э.н., доц. Захарченко Д.А.

КОНСПЕКТ ЛЕКЦИЙ

по курсу «Основы строительной отрасли»

для студентов специальности 6.030504 «Экономика предприятий»

№ кода _______

Утверждено на заседании кафедры

«Экономика предприятий»

ПРОТОКОЛ № __ от _______2011 р.

Макеевка 2011г.

ТЕМА 4. БОЛЬШЕПРОЛЕТНЫЕ ЗДАНИЯ И СООРУЖЕНИЯ

К большепролетным сооружениям относят такие, которые имеют пролеты более 40-80 м. Сравнительно недавно такие сооружения считались уникальными и строились крайне редко, в настоящее время быстрое развитие науки и техники, а также большая потребность в таких сооружениях в промышленности и сфере досуга и развлечения предопределили интенсивное строительство таких сооружений во многих странах.

Особый интерес представляют пространственные конструкции, которые состоят не из отдельных, независимых несущих элементов, передающих нагрузку друг друга, а представляют единую комплексную систему работающих частей конструкции.

Такой пространственный характер конструкций, широко внедряемый в строительство во всем мире - символ строительной техники 20в. И хотя некоторые виды пространственных конструкций - купола, крестовые и своды - были известны с древности, однако ни по применяемости материалов, ни по конструктивным решениям они не отвечают современным требованиям строительства, так как хотя и перекрывали значительные пролеты, но при этом были чрезвычайно тяжелы и массивны.

В пространственных конструкциях привлекает, и их способность оптимально удовлетворять функциональным и эстетическим требованиям архитектуры. Масштабы перекрываемых пролетов, возможность осуществлять гибкую планировку, разнообразие геометрических форм, материалов, архитектурная выразительность - вот далеко не полный перечень особенностей этих конструкций.

Сочетание функционального, технического и художественно-эстетического обеспечивает пространственным конструкциям широкую перспективу, не говоря уже о том, что их применение позволяет получить огромную экономию строительных материалов - на 20-30% снизить материалоемкость зданий и сооружений.


К плоскостным большепролетным сооружениям относятся балки, рамы, фермы, арки. Плоскостные конструкции работают под нагрузкой автономно, каждая в своей плоскости. Несущий элемент плоскостных конструкций, перекрывающих какую-то площадь здания (плита, балка, ферма) работает самостоятельно не участвуют в работе элементов, к которым он примыкает. Это обуславливает меньшую пространственную жесткость и несущую способность плоскостных элементов по сравнению с пространственными, а также их более высокую ресурсоемкость в первую очередь повышенный расход материалов.

Рис. 4.1. Конструктивные решения большепролетных конструкций

а - плоские конструкции; б - пространственные конструкции; в - висячие конструкции; г - пневматические конструкции; 1- фермы; 2 - рамы; 3-4 шарнирные арки; 5- цилиндрические оболочки; 6- оболочки двоякой кривизны; 7- купола; 8- структуры; 9- вантовые конструкции; 10- мембранные конструкции; 11- тентовые конструкции; 12- пневмоопорные конструкции; 13- пневмокаркасные конструкции;

Монтаж рам сплошной конструкции производят двумя самоходными стреловыми кранами. Сначала на фундамент устанавливают стойки рамы с частью ригеля , опирающиеся на временную опору, а затем монтируют средний участок ригеля. Соединение частей ригеля производится на временных опорах сваркой или крепкой. После монтажа первой рамы конструкции расчаливают с помощью растяжек.

В ряде случаев рамные конструкции целесообразно монтировать методом надвижки. Такой метод применяют, если рамные конструкции невозможно сразу установить в проектное положение (внутри ведутся работы либо уже возведены конструкции, не позволяющие расположить краны).

Блок собирают в торце здания в специальном кондукторе из 2-3 или 4 ферм. Собранный и закрепленный блок по рельсовым путям поднимают в проектное положение. Устанавливают при помощи домкратов или с помощью легких кранов.

Арочные конструкции бывают 2-х типов: в виде 2-х шарнирной арки с затяжкой и 3-х шарнирной арки. При монтаже арочных конструкций, имеющих несущую часть в виде двухшарнирной арки, производится аналогично монтажу рамных конструкций с помощью самоходных стреловых кранов . Основное требование - это высокая точность монтажа, гарантирующая совмещение пятого (опорного) шарнира с опорой.

Монтаж трехшарнирных арок отличается некоторыми особенностями, связанными с наличием верхнего шарнира. Сборка последнего выполняется при помощи временной монтажной опоры, устанавливаемой посередине пролета. Монтаж производиться методом вертикального подъема, методами скольжения или поворота.

Рис. 4.3. Монтаж рам

а - монтаж целиком двумя кранами; б - монтаж рам частями с использованием временных опор; в - монтаж рам методом поворота; 1-монтажный кран; 2-рама в сборе; 3-части рамы; 4-временные опоры; 5-лебедки; 6-монтажные стрелы.

Каждую полуарку стропят у центра тяжести и устанавливают так, чтобы пятовый шарнир был заведен на опору, а второй конец на временную опору. То же с другой полуаркой. Вращением в пятовом шарнире достигается совмещением осей замковых отверстий верхнего шарнира.

В пространственных конструкциях все элементы связаны между собой и участвуют в работе. Это приводит к значительному снижению расхода металла на единицу площади. Однако до последнего времени такие пространственные системы (купольные, вантовые, структурные, оболочки) не получали развития из-за высокой трудоемкости изготовления и монтажа.

Рис. 4.4. Монтаж купола с помощью временной центральной опоры

А - система разрезки купола; Б - монтаж купола; 1-временная опора с растяжками; 2-радиальнае панели; 3-опорное кольцо;

Купольные системы монтируются из отдельных стержней или из отдельных пластин. В зависимости от конструктивного решения, монтаж купольных конструкций может быть выполнен и с использованием временной стационарной опоры, навесным способом или в целом виде.

Сферические купола возводят кольцевыми ярусами, навесным способом. Каждый такой ярус обладает после полной сборки статистической устойчивостью и несущей способностью и служит основанием для вышележащего яруса. Сборные купола могут монтироваться при помощи кондукторных устройств и временных креплений - купол цирка в Киеве, или купол целиком собирается на земле и затем поднимается на проектный горизонт краном, пневмотранспортом или подъемником. Используется метод подращивания снизу.

Висячие конструкции стали применять со 2-й половины 19 века. И одним из первых примеров является покрытие павильона Всероссийской Нижегородской ярмарки, выполненное в 1896г. выдающимся советским инженером Шуховым .

Опыт применения таких систем доказал их прогрессивность, поскольку они позволяют максимально использовать высокопрочные стали и легкие ограждающие конструкции из пластиков и алюминиевых сплавов, что дает возможность создавать покрытия значительных пролетов.

Рис. 4.5. Монтаж висячих конструкций

1-башенный кран; 2-траверса; 3-тросовая полуферма; 4-центральный барабан; 5-временная опора; 6-смонтированная полуферма; 7- опорное кольцо.

В последнее время широкое распространение получили рамные висячие конструкции. Особенность устройства висячих конструкций заключается в том, что вначале возводятся несущие опоры, на которые укладывается опорный контур, воспринимающий натяжение от нитей вант. После их полной раскладки, покрытие загружают временной нагрузкой с учетом полной расчетной нагрузки. Такой прием предварительной напряженности исключает появление трещин в оболочке после полной ее нагрузки во время эксплуатации.

Разновидностью висячих вантовых конструкций являются мембранные покрытия. Мембранное покрытие представляет собой висячую систему в виде тонкой металлической листовой конструкции натянутой на железобетонный опорный контур. Один конец рулона закрепляется на опорном контуре, а рулон при помощи специального траверса краном разматывают на всю длину, натягивают лебедками и закрепляют на противоположном участке опорного контура.

Недостатком мембранных покрытий является необходимость сварки тонких листов по длине и монтажных элементов между собой с нахлестом в 50 мм. При этом практически невозможно получить сваркой шов равнопрочный с основным металлом, поэтому толщина листа искусственно завышается. Эта проблема в какой-то мере решается системой переплетенных лент из алюминиевых сплавов .

Первые длинные цилиндрические оболочки впервые были применены в 1928г. в Харькове при сооружении почтамта.

Длинные цилиндрические оболочки поставляются в полностью законченном виде или укрупняют по месту. Вес монтажных элементов 3х12 около 4 тонн. До подъема производится укрупнение в передвижном кондукторе двух плит вместе с затяжкой в один элемент. При укрупнении производят сварку закладных деталей в стыке, натяжение затяжки и замоноличивание швов.

Установив 8 укрупненных секций, образующих пролет 24м, их выверяют, чтобы совпадали и отверстия, далее сваривают все закладные детали и выпуски продольной арматуры , производят натяжение арматуры и бетонирование швов. После выдержки бетона оболочку раскружаливают и переставляют подмости.

В строительной практике пространственные, перекрестные, ребристые и стержневые конструкции обычно объединяют под названием структурные конструкции.

Перекрестные системы конструктивных различных форм покрытий с прямоугольными и диагональными решетками получили широкое распространение сравнительно недавно со второй половины 20 века в таких странах как США, Германия, Канада, Англия, бывший СССР.

Определенное время структурные конструкции не получали широкого развития из-за высокой трудоемкости изготовления и особенностей монтажа конструкции. Усовершенствование конструкции, особенно с использованием ЭВМ, позволило обеспечит переход на поточное их изготовление, снизить трудоемкость их расчета, повысить его точность и, следовательно, надежность.

Рис.4.6. Покрытие здания из крупноразмерных плит

1-плита размером 3х24м; 2-зенитный фонарь; 3-подстропильная ферма; 4- колонна.

В основе перекрестно-стержневых систем лежит опорная геометрическая форма. Отличительная особенность разных типов структурных конструкций - пространственный узел сопряжения стержней, который и определяет в значительной мере трудоемкость изготовления и сборки этих конструкций.

Структурные конструкции обладают рядом преимуществ по сравнению с традиционными плоскостными решениями в виде рам и балочных конструкций:

  • являются сборно-разборными и могут использоваться многократно;
  • могут изготавливаться на поточных автоматизированных линиях, чему способствует высокая типизация и унификация структурных элементов (часто необходим один тип стержней и один тип узла);
  • сборка не требует высокой квалификации;
  • имеют компактную упаковку и удобны при перевозке.

Наряду с отмеченными преимуществами структурные конструкции имеют и ряд недостатков:

  • укрупнительная сборка требует применения значительного объема ручного труда;
  • ограниченная несущая способность отдельных типов конструкций;
  • низкая заводская готовность поступающих на монтаж конструкций.

Пневмоконструкции используются для временного укрытия или для использования в каких-то вспомогательных целях, например в качестве опорных конструкций при возведении оболочек и других пространственных конструкций.

Пневматические покрытия могут быть 2-х видов - воздухоопрные и воздухонесущие. В первом случае небольшое избыточное давление мягкой оболочки сооружения обеспечивает получение необходимой формы. И эта форма будет сохраняться, пока будет поддерживаться подача воздуха и необходимое избыточное давление.

Во втором случае - несущий конструкцией служат заполненные воздухом трубы из эластичного материала, образующие как бы каркас сооружения. Иногда их называют пневматическими сооружениями высокого давления, потому что давление воздуха в трубах намного выше, чем под воздухоопорной пленкой.

Возведение воздухоопорных сооружений начинают с подготовки площадки, на которую укладывают бетон или асфальт. По контуру сооружения устраивают фундамент с анкерными и уплотняющими устройствами. Под действием воздушного давления оболочка распрямляется и приобретает проектную форму.

Воздухонесущие или пневмокаркасные конструкции сооружаются аналогично воздухоопорным, лишь с той разницей, что воздух подают от компрессора по резиновым трубами и через специальные вентили закачивается в замкнутые каналы так называемого каркаса сооружения. Благодаря высокому давлению в камерах каркас занимает проектное положение (чаще всего в виде арок) и поднимает за собой ограждающую ткань.

Архитектурный облик большепролетных зданий в значительной степени определяется их ролью в композиции фрагмента окружающей городской застройки, функциональными особенностями зданий и примененными конструкциями покрытий.

Общественные функции зданий зального типа требуют выделять перед ними значительные свободные пространства различного назначения для: перемещения больших потоков зрителей перед началом или по окончании зрелищ (перед зрелищными или демонстрационными спортивными сооружениями); размещения открытой части экспозиции (перед выставочными павильонами): сезонной торговли (перед крытыми рынками) и т. д. Перед любыми из этих зданий отводят также территории для паркования индивидуальных автомашин. Таким образом, независимо от назначения здания его размещение в застройке дает возможность целостно воспринимать объем сооружения с удаленных точек зрения. Это обстоятельство определяет общие композиционные требования к архитектуре зданий: целостность и монументальность их облика и преимущественно крупный масштаб основных членений объема.

Такую особенность градостроительной роли общественных зданий зального типа часто учитывают в композиции их облика. Вспомогательные и обслуживающие помещения, которые могут быть размещены в отдельных объемах, приблокированных к основному (как, например, во Дворце спорта «Юбилейный» в Санкт-Петербурге), по большей части не блокируют, а вписывают в основной объем здания. Для этого вспомогательные и обслуживающие помещения спортивных зданий располагают в нижних этажах или в подтрибунном пространстве, в зданиях крытых рынков и выставочных павильонов - в цокольном и подвальном этажах и т. п.

Характерными примерами реализации подобного объемно-планировочного принципа компоновки здания служат такие внешне различные объекты, как универсальный Олимпийский зал «Дружба» в Лужниках в Москве и здание спортивного центра префектуры Такамацу в Ниигате (Япония).

Зал «Дружба» имеет основной демонстрационный зал вместимостью 1,5-4 тыс. зрителей (при трансформации) с ареной 42X42 м, рассчитанной на 12 видов спорта при оптимальной видимости всех соревнований (предельное удаление 68 м). Зал покрыт пологой сферической оболочкой, опертой на 28 наклонных опор из сборно-монолитных складчатых оболочек двоякой кривизны. Наклонное расположение опор позволило увеличить габариты первого этажа и за счет этого разместить в нем четыре тренировочных зала и четыре спортивные площадки, вписанные в единый центрально-симметричный объем с ярко выраженной тектоничностью архитектурной формы ( ).

Спортивный центр в Ниигате имеет арену 42X42 м с двусторонними трибунами вместимостью 1,3 тыс. мест и рассчитан на 17 видов спорта, что при радиусе предельного удаления в 40 м обеспечивает комфортное зрительное восприятие. Компактность объема позволяет рационально поярусно разместить основные функциональные группы помещений: для обслуживания зрителей - на первом этаже, для спортсменов - на втором, зал - на третьем. Сама объемная осесимметричная форма, образованная сочетанием двух оболочек двоякой кривизны (покрытие и нижнее перекрытие), на пространственном опорном контуре, лежащем на четырех мощных пилонах, индивидуальна и исполнена образной символики (рис. 111 ).

Рис. 111. Спортивный центр в Ниигате (Япония): а - общий вид; б - продольный разрез; в- схема несущих конструкций: 1 - несущие ванты; 2 - стабилизирующие ванты; 3 - опоры; 4 - бортовой элемент.

Из обоих примеров видно влияние конструктивной формы покрытия на архитектурную форму. И это не случайно, так как конструкция покрытия составляет от 60 до 100% наружных ограждений зданий.

Из числа функциональных параметров на выбор формы покрытия наибольшее влияние оказывают принятые план, вместимость, характер размещения зрительских мест (в спортивных и зрелищных зданиях) и величины пролетов покрытий ( ). В мировой практике для выставочных, многофункциональных зрительных и спортивных залов используют ограниченное число форм планов: прямоугольник, трапецию, овал, круг, многоугольник.

Однако форма плана зала и величины его пролетов не предопределяют однозначно форму покрытия. Большое влияние на ее выбор оказывают не только план, но и обусловленная функциональными особенностями форма здания. Как известно, в демонстрационных спортивных залах вместимость и расположение трибун определяют асимметричную или центрально-симметричную композицию здания, с которой должен быть согласован выбор формы покрытия. С асимметричной формой здания хорошо гармонируют висячие покрытия, с осесимметричной - как сводчатые, так и висячие. Для центричных в плане зданий применимы центричные же конструкции покрытий ( , ).

Окончательный выбор формы покрытия помимо функциональных определяется конструктивными, технологическими, технико-экономическими и архитектурно-художественными требованиями. Согласно последним, конструкция уникального большепролетного здания должна способствовать созданию выразительной тектоничной, индивидуальной, масштабной архитектурной формы. Внедрение пространственных висячих конструкций и конструкций из жестких оболочек дало беспрецедентные и многовариантные архитектурные возможности. Комбинируя различные типы, число, размеры элементарных оболочек, архитектор с помощью конструктора может добиться требуемого масштабного членения формы и индивидуализации ее облика, оригинально разместить проемы верхнего света в покрытии.

Так, например, только для покрытия треугольного в плане помещения могут быть применены пологая оболочка на выпуклом контуре, комбинированное покрытие из четырех треугольных в плане оболочек положительной кривизны, из трех - отрицательной и одной - положительной кривизны и т. д. Одним из наиболее оригинальных по конструкции и выразительных по архитектурной форме является покрытие треугольного в плане выставочного здания в Париже комбинированной оболочкой в виде сомкнутого из трех лотков свода пролетом 206 м. Лотки состоят из двух волнистых оболочек, раскрепленных через каждые три волны диафрагмами жесткости. Использование волнистой формы позволило решить не только чисто конструктивную задачу (достигнуть устойчивости тонкой оболочки), но и обеспечило масштабность композиции этого уникального здания, а традиционная для архитектуры камня система сомкнутого свода получила индивидуальную и остро современную тектоническую трактовку. Столь же индивидуальной и современной оказалась композиционная трактовка железобетонного крестового свода покрытия над квадратным планом здания крытого Олимпийского катка в Гренобле.

Естественно, однако, что в наибольшей степени современный характер архитектуре большепролетных покрытий железобетонными жесткими оболочками придают присущие только им комбинации геометрических форм в виде волнистых куполов и сводов, элементарных или комбинированных фрагментов оболочек с поверхностями отрицательной кривизны или комбинации из оболочек произвольной геометрической формы.

Архитектурно-композиционные возможности висячих систем покрытий непосредственно связаны с их конструктивной формой, возможностями ее индивидуализации и тектоничного выявления в объемной форме здания. В этом отношении наибольшими возможностями обладают висячие покрытия шатрового типа, покрытия на пространственном контуре, а также различные варианты комбинированных висячих систем. В чрезвычайном разнообразии внешнего облика зданий, которое обеспечивает применение висячих покрытий на замкнутом пространственном контуре, можно убедиться, сопоставив такие олимпийские объекты Москвы, как крытый велотрек и спортивный зал в Измайлове. К сожалению, мало способствует индивидуальности внешнего облика здания применение ряда технически наиболее эффективных висячих конструкций, например одно- или двухпоясных систем с горизонтальным кольцевым опорным контуром над круглыми или эллиптическими в плане зданиями. Несущая конструкция с малой стрелой провиса не выявляется во внешней форме здания, а в интерьере обычно бывает скрыта подвесными потолками или осветительными установками. Здания с покрытиями такого типа обычно имеют композицию в виде круглого периптера, антаблемент которого - кольцо опорного контура, а колонны - поддерживающие его стойки (Дворец спорта «Юбилейный» и Олимпийский зал в Санкт-Петербурге, Олимпийский дворец спорта на проспекте Мира в Москве и др.).

Наряду с несущими конструкциями покрытий в композиции зальных общественных зданий значительную роль играют наружные, как правило, ненесущие стены. Образным выражением их ненесущей функции может служить выполнение их с незначительным отклонением от вертикали, придающее зданию характерный силуэт (сужающийся или расширяющийся книзу).

Значительную часть поверхности наружных стен зальных зданий занимают светопрозрачные витражные конструкции. Их композиционные свойства и членения обогащаются при сочетании в конструкции двух-трех светопрозрачных материалов, например профильного и листового стекла.

Конструктивные решения металлических покрытий большепролетных зданий могут быть балочными, арочными, пространственными, висячими Байтовыми, мембранными и др. Учитывая, что в таких конструкциях основной нагрузкой является собственный вес, следует стремиться к его уменьшению, что достигается применением сталей повышенной прочности и алюминиевых сплавов.

Балочные системы (как правило, фермы) включаются в состав поперечных рам, что улучшает статическую схему работы. При пролетах более 60-80 м целесообразно использовать арочные покрытия (рис. 1). Такие покрытия при больших пролетах целесообразно проектировать предварительно-напряженными. В арочном покрытии, представленном на рис. 2, верхний пояс предусмотрен жестким, а нижний пояс и решетка арки выполнены из тросов. После монтажа арки осуществляют принудительное смещение опорных узлов наружу, что вызывает предварительное растяжение в нижнем поясе и раскосах арки.

Рисунок 1. 1 - арка; 2 - затяжка; 3 - неподвижная шарнирная опора; 4 - подвижная шарнирная опора

Рисунок 2. 1 - трос; 2 - жесткий пояс

Пространственные решетчатые конструкции покрытий могут быть плоскими двухслойными (двухсетчатыми) и криволинейными однослойными (односетчатыми) или двухслойными. В двухсетчатых конструкциях две параллельные сетчатые поверхности соединяются между собой решетчатыми связями.

Сетчатые системы регулярного строения называются структурными и применяются, как правило, в виде плоских покрытий. Они представляют собой различные системы перекрестных ферм (рис. 3). Структурные плоские перекрытия благодаря большой пространственной жесткости имеют небольшую высоту (1/16-1/20 пролета), ими можно перекрывать большие пролеты. Устройством консольных свесов за линией опор достигается уменьшение изгибающих моментов и веса покрытия.

Рисунок 3. 1,2 - верхняя и нижняя поясные сетки; 3 - раскосы; 4 - тетраэдр; 5 - октаэдр; 6 - опорная капитель

Криволинейные пространственные покрытия имеют, как правило, цилиндрическую или купольную поверхность.

Цилиндрические покрытия могут быть односетчатыми или двухсетчатыми (криволинейные структуры). Они в поперечном направлении работают как свод, распор которого воспринимается стенами или затяжками.

Купольные покрытия могут иметь ребристую (или ребристо-кольцевую) конструктивную схему (рис. 4а) или сетчатую (рис. 4б). В ребристых куполах радиально расположенные ребра соединены между собой кольцевыми прогонами. Если последние составляют с ребрами единую жесткую пространственную систему, то тогда кольцевые прогоны работают не только на местный изгиб, но в составе купольной системы воспринимают также кольцевые сжимающие или растягивающие усилия. В сетчатых куполах в состав конструкции кроме ребер и кольцевых элементов входят раскосы, что создает условия, при которых стержни работают только на осевые усилия.

Рисунок 4. а - ребристое; б - сетчатое

Висячие покрытия состоят из опорного контура и основных несущих элементов в виде вант или тонких стальных листов, работающих на растяжение. Поскольку основные элементы покрытия работают на растяжение, их несущая способность определяется прочностью (а не устойчивостью), что позволяет эффективно использовать высокопрочные канаты или листовую сталь. Такие покрытия весьма экономичны, однако повышенная деформативность ограничивает их применение для покрытий производственных зданий. Кроме того, учитывая большую распорность таких систем, форму в плане целесообразно принимать круглой, овальной или многоугольной, что облегчает восприятие распора. В связи с этим они применяются, в основном, для покрытий спортивных зданий, крытых рынков, выставочных павильонов, складов, гаражей и других зданий больших пролетов.

В состав вантовых висячих покрытий входят гибкие ванты (стальные канаты или арматурные стержни), располагаемые в радиальном направлении (рис. 5а), в ортогональных направлениях (рис. 5б) или параллельно друг другу в одном направлении (рис. 6). Криволинейные замкнутые опорные контуры работают преимущественно на сжатие, а центральное кольцо - на растяжение. В этих случаях на поддерживающие покрытие конструкции (стены, колонны, рамы) передаются только вертикальные силы. В отличие от этого при незамкнутых контурах распор передается на несущие конструкции здания, что требует устройства анкерных фундаментов, работающих на выдергивание, или стен с контрфорсами и т. п. На систему вант укладываются плиты из легкого железобетона или металлические с полимерным утеплителем, трехслойные и др.

Рисунок 5. а - радиальное расположение вант; б - ортогональное; 1 - ванты; 2 - опорный контур; 3 - центральное кольцо

Рисунок 6. 1,2 - ванты соответственно в середине и в торце; 3 - опорный контур; 4 - железобетонные плиты; 5 - анкерный фундамент

Системы висячих вантовых покрытий отличаются большим разнообразием. Нередко применяют шатровую вантовую систему, при которой центральное кольцо покоится на колонне и поднимается на более высокую отметку, чем опорное контурное.

Примером такой системы может служить покрытие автобусного парка в Киеве диаметром 161м. Описанные выше системы являются однопоясными. Кроме них применяются также двухпоясные системы (особенно при больших ветровых нагрузках), в которых стабилизация покрытия осуществляется с помощью контура обратной кривизны. В таких системах несущие ванты имеют выгиб вниз, а стабилизирующие - вверх. Стабилизирующие ванты с установленным на них настилом могут быть расположены над несущими, что вызывает сжатие распорок (рис. 7а). При расположении стабилизирующих тросов под несущими вантами связи между ними будут растянутыми (рис. 7б). Возможен и третий вариант, при котором несущие и стабилизирующие тросы пересекаются, а стойки сжаты в средней части покрытия и растянуты - в крайних (рис. 7б).

Рисунок 7. 1 - стабилизирующие ванты; 2 - стойки; 3 - несущие ванты

Большое распространение в зарубежной и отечественной практике получили также висячие тонколистовые системы - мембранные покрытия.

Они представляют собой пространственную конструкцию из тонкого металлического листа (стального или из алюминиевых сплавов) толщиной в несколько миллиметров, закрепленного по периметру в опорном контуре. Их преимущества состоят в совмещении несущей и ограждающей функций, а также в повышенной индустриальности изготовления. В некоторых случаях вместо сплошной мембраны покрытие образуется из отдельных, не соединяемых друг с другом, тонких стальных лент. Располагаемые в двух взаимоперпендикулярных направлениях ленты могут переплетаться, что предотвращает их расслаивание.

Сплошное мембранное покрытие успешно применено для универсального стадиона на проспекте Мира в Москве, размеры, в плане которого достигают 183x224 м (рис. 8).

Рисунок 8. Конструктивная схема покрытия универсального стадиона на проспекте Мира в Москве (стальная мембрана толщиной 5 мм): а - план; б - продольный разрез; в - поперечный

В состав спортивного комплекса, построенного в г. Бишкеке, входит зал на 3 тысячи зрителей, покрытие которого решено в виде предварительно напряженной мембранно-балочной висячей системы (рис. 9). Каркас здания выполнен из монолитного здания железобетона в виде раскосных ферм, расположенных по периметру размерами в плане 42,5x65,15 м. Покрытие состоит из собственно мембраны толщиной 2 мм, продольных прогонов и поперечных балок - распорок. Утеплитель в виде минераловатных матов подвешен к мембране снизу, потолок выполнен из штампованных алюминиевых элементов.

Мембранные покрытия использованы и в ряде других большепролетных зданиях. Так, в Санкт-Петербурге универсальный спортивный зал диаметром 160 м перекрыт мембранной оболочной толщиной 6 мм. Подобными оболочками перекрыты также универсальный спортивный зал с размерами в плане 66x72 м на 5 тысяч зрителей в Измайлово (Москва), здание плавательного бассейна «Пионер» с размерами в плане 30x63 м в Харькове и др.

Складчатые своды покрытий - пространственная конструкция, которая может быть выполнена из металла (стали, алюминиевых сплавов), железобетона, пластмасс.

Особенно эффективны такие покрытия из алюминиевых сплавов. Основным конструктивным элементом в последних может служить лист ромбовидной формы (рис. 10), согнутый вдоль большей диагонали. Сопряжения ромбовидных элементов между собой может осуществляться при помощи цилиндрических шарниров или жесткими фланцевыми сочленениями. Для повышения пространственной жесткости покрытия (особенно при шарнирных сопряжениях) необходимо

предусматривать установку продольных затяжек по выступающим узлам складчатого свода.

Рисунок 9. 1 - каркас здания; 2 - мембрано-балочная висячая система

Рисунок 10.

Современные инженерные и строительные технологии позволяют возводить уникальные большепролетные сооружения и пространственные конструкции, которые имеют расстояния между несущими опорами более 40 метров, делая их надежными и функциональными. Чаще всего это бывают заводские машиностроительные и судостроительные цеха, ангары, автостоянки, стадионы, здания вокзалов, театров и галерей.

Большепролетные металлические конструкции имеют упругость, позволяют создавать разнообразные виды сопряжений для построения выразительных геометрических форм и архитектурных решений любой сложности. При этом они содержат множество концентраторов напряжений. Правильное и равномерное распределение высокой несущей нагрузки между конструктивными элементами важно, поскольку под действием естественной тяжести конструкции и вилянием внешних факторов могут возникать опасные повреждения.

Сооружения, в основе которых заложены большепролетные балки, при строительстве и в процессе эксплуатации подвержены особенному риску возникновения деформаций и трещин, в последующем ведущих к разрушению. Поэтому требуют постоянного мониторинга в реальном времени и наблюдения за их состоянием для обеспечения условий безопасности.

Типичные причины, которые вызывают проблемы большепролетных зданий:

  • неграмотно проведенные геофизические и геодезические изыскания, замена экспериментальных расчетов моделированием;
  • ошибки проектирования, просчеты при определении нагрузок и точек расположения геометрических центров, смещения осей, нарушения принципов прямолинейности или жесткости элементов;
  • нарушение технологий изготовления или правил монтажа конструкций, неправильные узловые соединения, использование неподходящих строительных материалов (например, выбор вида стали, непригодного для конкретных условий);
  • неравномерные осадочные процессы, влияющие на устойчивость и целостность фундаментов, опорных элементов, сводов и перекрытий;
  • неправильная эксплуатация, ненормированные нагрузки и аварийные воздействия;
  • временной износ;
  • влияние неблагоприятных природных факторов (ветрового давления, смещений почвенных пластов и движения грунтовых вод, сейсмических процессов, температурно-влажностных условий, в которых происходит ржавление металлических элементов конструкций, разрушение бетона и т.д.);
  • вибрации, создаваемые движением транспорта и ведущимися вблизи строительными работами.

В результате влияния этих факторов и причин происходят деформации основных опор и потеря ими несущих способностей, прогибы и смещения пролетных балок, прогрессирующие разрушения. Это создает опасность для жизни людей и приводит к экономическим потерям, связанным с необходимостью компенсации ущерба от аварий и проведением ремонта.

Мониторинг состояния объектов

Мониторинг большепролетных зданий и сооружений позволяет отслеживать физический износ, снижение несущих способностей инженерных конструкций, выявлять неблагоприятные изменения, появление дефектов и повреждений, обнаруживать опасные напряженно-деформационные состояния, контролировать их выход за предусмотренные проектом предельные значения, вовремя замечать превышения установленных коэффициентов надежности и предельно допустимых величин отклонений наблюдаемых параметров.

Мониторинг осуществляется при помощи специальных высокоточных измерительных инструментов, контрольных приборов, регистраторов значимых параметров и показателей надежности, улавливающих электромагнитные и ультразвуковые колебания, датчиков и геодезических маркеров, компьютеризированных диспетчерских пультов, автоматического оборудования и сигнальных систем оповещения.
Большепролетные здания оборудуются инженерными системами мониторинга и управления, которые информационно связаны с дежурно-диспетчерскими службами МЧС. Такие системы позволяют производить сбор данных одновременно от многих передатчиков и по разным параметрам. Эта информация стекается в единый центр, интегрируется, анализируется при помощи заданных алгоритмов и в итоге выдается схематично и наглядно оформленный результат, свидетельствующий о состоянии исследуемой конструкции.

На основе этого специалисты по мониторингу могут составлять заключения, прогнозы и отчеты с обоснованной диагностикой объектов, рекомендациями и программами эффективных мер по устранению имеющихся дефектов и дестабилизирующих факторов, минимизации рисков и угроз наступления аварийных ситуаций, их избежанию и предотвращению ущерба. В случае возникновения чрезвычайных и нештатных ситуаций, о них оперативно информируются спасательные службы.

Специалисты по инженерно-строительному мониторингу

Компания СМИС Эксперт разрабатывает системные решения для проведения оценки уязвимости и диагностики проблем большепролетных сооружений, мониторингового сопровождения строительства и эксплуатации зданий различного назначения. Имеем большой опыт и высокую квалификацию специалистов. Используем современные научные знания и инновационные технологии. Обеспечиваем профессиональный геодезический мониторинг и исследование любых видов объектов для установления степени их надежности, безопасности и долговечности. Реализуем высокоточное измерительное оборудование и приборы.