Главная · Инструмент · Современные метеорологические приборы в быту. Основные метеорологические приборы. Методы аэрологических наблюдений

Современные метеорологические приборы в быту. Основные метеорологические приборы. Методы аэрологических наблюдений

Прогноз погоды делается как на основании показаний судовых приборов, так и информации, передаваемой береговыми метеорологическими службами.

Основной элемент при прогнозировании погоды - атмосферное давление. Нормальное атмосферное давление - это масса ртутного столба высотой 760 мм на площади 1 см 2 . Для измерения давления в судовых условиях применяют барометр-анероид и барограф (рис. 1).

Прибор, ведущий непрерывную запись атмосферного давления на специальной бумажной ленте-барограмме. Это позволяет судить об изменении атмосферного давления во времени и делать соответствующие прогнозы.

Рис. 1 Приборы для измерения атмосферного давления: барометр-анероид и барограф

Для измерения скорости и направления истинного ветра служат анемометр, секундомер и круг СМО (рис. 2).


Рис. 2 Приборы для определения скорости и направления ветра: 1 - круг СМО, анемометр и секундомер 2 - автоматическая метеостанция

Служит для измерения средней скорости ветра за определен-ный промежуток времени. Счетчик анемометра имеет три циферблата: большой, разделенный на сто частей, дающий единицы и десятки делений, и два малых — для счета сотен и тысяч делений. Перед определением скорости ветра необходи-мо записать отсчет шкал. Затем встать на верхнем мостике с наветренного борта в таком месте, где ветровой поток не искажается судовыми конструкциями. Держа анемометр в вытянутой руке, одновременно включить его с секундоме-ром. По истечении 100 секунд анемометр выключить и записать новый отсчет. Найти разность отсчетов и разделить на 100. Полученный результат — скорость ветра, измеренная в метрах в секунду (м/с).

Если судно на ходу, то измеряется кажущее (наблюдаемое) направление и скорость ветра, т. е. результирующая скоростей истинного ветра и судна. При определении кажущегося направ-ления ветра следует помнить, что ветер всегда «дует в компас».

Для определения истинного направления и скорости ветра на движущемся судне применяется круг СМО (Севастопольская морская обсерватория). Порядок расчета приведен на обратной стороне круга.

На современных судах устанавливаются автоматические метеостанции. На верхнем мостике крепится измерительная аппаратура, на мостик выведены ин-дикаторы, показывающие направление и скорость истинного ветра в данный момент.

Для измерения влажности на судах применяют аспирационный психро-метр (рис. 3), состоящий из двух термометров, вставленных в металлическую никелированную оправу, сверху которой навинчен аспиратор (вентилятор). При заведенном аспираторе воздух всасывается снизу через двойные трубки, кото-рыми защищены резервуары термометров. Обтекая резервуары термометров, воздух сообщает им свою температуру. Правый резервуар обертывают батистом, который при помощи пипетки смачивают за 4 минуты до пуска вентилятора. Измерения производят на крыле мостика с наветренной стороны. Отсчеты сни-мают сначала с сухого термометра, потом с мокрого.

Влажность воздуха характеризуется содержанием водяного пара в возду-хе. Количество водяного пара в граммах, приходящееся на один кубический метр влажного воздуха, называется абсолютной влажностью.

Относительная влажность — отношение количества водяного пара, со-держащегося в воздухе, к количеству пара, необходимого для насыщения возду-ха при данной температуре, выражается в процентах. При понижении темпера-туры относительная влажность увеличивается, при повышении — уменьшается.

При охлаждении воздуха содержащего водяной пар, до некоторой темпе-ратуры он окажется настолько насыщенным водяным паром, что дальнейшее охлаждение вызовет конденсацию, т. е. образование влаги, или сублимацию — непосредственное образование кристаллов льда из водяного пара. Температура, при которой содержащийся в воздухе водяной пар достигает насыщения, назы-вается точкой росы.

Для измерения температуры атмосферного воздуха применяется термометр (рис. 4).


Рис. 3 Аспирационный психрометр Рис. 4 Прибор для измерения температуры воздуха

Чтение факсимильных карт

Сведения о погоде и состоянии моря, необходимые для решения вопроса о выборе курса следования или производстве работ в море, могут быть получены в виде факсимиль-ных передач различных карт. Этот вид гидро-метеорологической информации является наиболее информативным. Он характеризует-ся большим разнообразием, оперативность и наглядностью.

В настоящее время региональные гидрометеорологические центры состав-ляют и передают в эфир большое количество самых разнообразных карт. Ниже приводится список карт, наиболее используемых для нужд мореплавания:

  • приземный анализ погоды. Карта составляется на основе приземных метео-рологических наблюдений в основные сроки;
  • приземный прогноз погоды. Показывает ожидаемую погоду в указанном рай-оне через 12, 24, 36 и 48 часов;
  • приземный прогноз малой заблаговременности. Приводится ожидаемое поло-жение барической системы (циклонов, антициклонов, фронтов) в приземном слое на следующие 3-5 дней;
  • анализ поля волнения. Эта карта дает характеристику поля волнения по райо-ну — направление распространения волн, их высоту и период;
  • прогноз поля волнения. Показывает прогнозируемое поле волнения на 24 и 48 часов — направление волнения и высоту преобладающих волн;
  • карта ледовых условий. Показана ледовая обстановка в данном районе (спло-ченность, кромка льда, полыньи и другие характеристики) и положение айс-бергов.

Карты приземного анализа содержат данные о фактической погоде в ниж-них слоях атмосферы. Барическое поле на этих картах представлено изобарами на уровне моря. Основные приземные карты составляют на 00:00, 06:00, 12:00 и 5:00 часов среднего гринвического времени.

Прогностические карты — это карты ожидающейся синоптической обста-новки (12, 24, 36, 48, 72 часов). На приземных прогностических картах, указыва-ются предполагаемые положения центров циклонов и антициклонов, фронталь-ных разделов, барических полей.

При чтении факсимильных гидрометеорологических карт первоначаль-ную информацию штурман получает из заголовка карты. Заголовок карты со-держит следующую информацию:

  • тип карты;
  • географический район, охватываемый картой;
  • позывные гидрометеостанции;
  • дата и время издания;
  • дополнительные сведения.

Тип и район карты характеризуется первыми четырьмя символами, при-чем первые два характеризуют тип, а последующие два — район карты. Напри-мер:

  • ASAS — приземный анализ (AS — analysis surface) для азиатской части (AS — Asia);
  • FWPN — прогноз волнения (FW — forecast wave) для северной части Тихого океана (PN — Pacific North).

Часто встречаемые сокращения приведены ниже:

  • Карты анализа гидрометеообстановки.
    • AS — приземный анализ (Surface Analysis);
    • AU — высотный анализ (Upper Analysis) для различных высот (давлений);
    • AW — анализ волнения/ветра (Wave/Wind Analysis);
  • Прогностические карты (на 12, 24, 48 и 72 часа).
    • FS — приземный прогноз (Surface Forecast)
    • FU — высотный прогноз (Upper Forecast) для различных высот (давлений).
    • FW — прогноз ветра/волнения (Wave/Wind Forecast).
  • Специальные карты.
    • ST — ледовый прогноз (Sea Ice Condition);
    • WT — прогноз тропических циклонов (Tropical Cyclone Forecast);
    • CO — карта температуры поверхности воды (Sea Surface Water Temperature);
    • SO — карта поверхностных течений (Sea Surface Current).
  • Для обозначения района, охватываемого картой, обычно используются следующие сокращения:
    • AS — Азия (Asia);
    • AE — юго-восточная Азия
    • PN — северная часть Тихого океана (Pacific North);
    • JP — Япония (Japan);
    • WX — экваториальный пояс (Equator zone) и т. д.

Четыре буквенных символа могут сопровождаться 1-2 цифровыми симво-лами, уточняющими тип карты, например FSAS24 — приземный анализ на 24 ча-са или AUAS70 — надземный анализ для давления 700 гПа.

За типом и районом карты следуют позывные радиостанции, передающей карту (например, JMH — Japan Meteorological and Hydrographic Agency). Во вто-рой строке заголовка указывается дата и время составления карты. Дата и время приведены к Гринвичскому или Всемирному координированному времени. Для обозначения приведенного времени используются сокращения Z (ZULU) и UTC (Universal Coordinated Time) соответственно, например, 240600Z JUN 2007 — 24.06.07 г., 06.00 по Гринвичу.

В третьей и четвертой строках заголовка расшифровывается тип карты и дается дополнительная информация (рис. 5).

Барический рельеф на факсимильных картах представлен изобарами — ли-ниями постоянного давления. На японских картах погоды изобары проведены через 4 гектопаскаля для давлений, кратных 4 (например, 988, 992, 996 гПа). Каждая пятая изобара, т. е. кратная 20 гПа, проведена жирной линией (980, 1000, 1020 гПа). На таких изобарах обычно (но не всегда) подписано давление. В слу-чае необходимости, проводятся также промежуточные изобары через 2 гекто-паскаля. Такие изобары проводятся пунктирной линией.

Барические образования на картах погоды Японии представлены цикло-нами и антициклонами. Циклоны обозначаются буквой L (Low), антициклоны — буквой H (High). Центр барического образования обозначен знаком «х». Рядом указано давление в центре. Стрелка возле барического образования указывает направление и скорость его перемещения.


Рис. 5 Карта приземного анализа погоды для азиатского района

Существуют следующие способы обозначения скорости передвижения барических образований:

  • ALMOST STNR — практически неподвижный (almost stationary) — скорость барического образования менее 5 узлов;
  • SLW — медленно (slowly) — скорость барического образования от 5 до 10 узлов;
  • 10 kT — скорость барического образования в узлах с точностью до 5 узлов; К наиболее глубоким циклонам даются текстовые комментарии, в кото-рых дается характеристика циклона, давление в центре, координаты центра, направление и скорость перемещения, максимальная скорость ветра, а также зо-на ветров со скоростями, превышающими 30 и 50 узлов.

Пример комментария к циклону:

  • DEVELOPING LOW 992 hPa 56.2N 142.6E NNE 06 KT MAX WINDS 55 KT NEAR CENTER OVER 50 KT WITHIN 360 NM OVER 30 KT WITHIN 800 NM SE-SEMICIRCULAR 550 NM ELSEWHERE.
  • DEVELOPING LOW — развивающийся циклон. Может также быть DE-VELOPED LOW — развитой циклон;
    • давление в центре циклона — 992 гПа;
    • координаты центра циклона: широта — 56.2° N, долгота — 142.6° E;
    • циклон движется на NNE со скоростью 6 узлов;
    • максимальная скорость ветра вблизи центра циклона — 55 узлов.

В развитии тропический циклон проходит 4 основные стадии:

  • TD — тропическая депрессия (Tropical Depression) — область понижен-ного давления (циклон) со скоростью ветра до 17 м/с (33 уз., 7 баллов по шка ле Бофорта) с ярко выраженным центром;
  • TS — тропический шторм (Tropical Storm) — тропический циклон со скоростью ветра 17-23 м/с (34-47 уз., 8-9 баллов по шкале Бофорта);
  • STS — сильный (жестокий) тропический шторм (Severe Tropical Storm) — тропический циклон со скоростью ветра 24-32 м/с (48-63 уз., 10-11 баллов по шкале Бофорта);
  • T — тайфун (Typhoon) — тропический циклон со скоростью ветра более 32,7 м/с (64 уз., 12 баллов по шкале Бофорта).

Направление и скорость перемещения тропического циклона указывается в виде вероятного сектора движения и кругов вероятного положения через 12 и 24 часа. Начиная со стадии TS (тропический шторм), на картах погоды дается текстовый комментарий к тропическому циклону, а, начиная со стадии STS (сильный тропический шторм), тропическому циклону присваивается номер и имя.

Пример комментария к тропическому циклону:

  • T 0408 TINGTING (0408) 942 hPa 26.2N 142.6E PSN GOOD NORTH 13 KT MAX WINDS 75 KT NEAR CENTER EXPECTED MAX WINDS 85 KT NEAR CENTER FOR NEXT 24 HOUR OVER 50 KT WITHIN 80 NM OVER 30 KT WITHIN 180 NM NE-SEMICIRCULAR 270 NM ELSEWHERE.

T (тайфун) — стадия развития тропического циклона;

  • 0408 — национальный номер;
  • имя тайфуна — TINGTING;
  • (0408) — международный номер (восьмой циклон 2004 года);
  • давление в центре 942 гПа;
  • координаты центра циклона 56.2° N 6° E. Координаты определены с точностью до 30 морских миль (PSN GOOD).

Для указания точности определении координат центра циклона использу-ются следующие обозначения:

  • PSN GOOD — точность до 30 морских миль;
  • PSN FAIR — точность 30-60 морских миль;
  • PSN POOR — точность ниже 60 морских миль;
  • движется на NORTH со скоростью 13 узлов;
  • максимальная скорость ветра 75 узлов вблизи центра;
  • ожидаемая максимальная скорость ветра 85 узл на следующие 24 часа.

На картах погоды также указываются опасные для навигации явления в виде гидрометеорологических предупреждений. Виды гидрометеорологических предупреждений:

  • [W] — предупреждение о ветре (Warning) со скоростью до 17 м/с (33 узлов, 7 баллов по шкале Бофорта);
  • — предупреждение о сильном ветре (Gale Warning) со скоростью 17-23 м/с (34-47 узлов, 8-9 баллов по шкале Бофорта);
  • — предупреждение о штормовом ветре (Storm Warning) скоростью 24-32 м/с (48-63 узлов, 10-11 баллов по шкале Бофорта);
  • — предупреждение об ураганном ветре (Typhoon Warning) со ско-ростью более 32 м/с (более 63 узлов, 12 баллов по шкале Бофорта).
  • FOG [W] — предупреждение о сильном тумане (FOG Warning) с види-мостью менее 4 мили. Границы района предупреждения обозначаются волнистой линией. Если район предупреждения невелик, границы его не указываются. В этом случае считается, что район занимает прямо-угольник, описанный вокруг надписи предупреждения.

Нанесение гидрометеорологических данных на карты погоды производит-ся по определенной схеме, условными знаками и цифрами, вокруг кружка, обо-значающего местоположение гидрометеостанции или судна.

Пример информации от гидрометеостанции на карте погоды:


Информация от гидрометеостанции

В центре находится круг, изображающий гидрометеостанцию. Штриховка круга показывает общее количество облаков (N):

  • dd — направление ветра, обозначается стрелкой, идущей к центру кружка станции со стороны, откуда дует ветер.

Знаки и значение облаков

ff — скорость ветра, изображается в виде оперения стрелки следующими символами:

  • малое перо соответствует скорости ветра 2,5 м/с;
  • большое перо соответствует скорости ветра 5 м/с;
  • треугольник соответствует скорости ветра 25 м/с.
Скорость ветра

При отсутствии ветра (штиль) символ станции изображается двойным кружком.

VV- горизонтальная видимость, показываемая цифрой кода по следующей таблице:

Горизонтальная видимость
Код VV, км Код VV, км Код VV, км Код VV, км Код VV, км
90 <0,05 92 0,2 94 1 96 4 98 20
91 0,05 93 0,5 95 2 97 10 99 >50
  • PPP - атмосферное давление в десятых долях гектопаскаля. Цифры тысяч и сотен гектопаскалей опускаются. Например, давление 987,4 гПа наносится на карту как 874, а 1018,7 гПа как 187. Знак “ххх” указывает, что давление не измерялось.
  • ТТ - температура воздуха в градусах. Знак “хх” указывает, что температура не измерялась.
  • Nh — количество облаков нижнего яруса (CL), а при их отсутствии количество облаков среднего яруса (CM), в баллах.
  • CL, CM, CH — форма облаков нижнего (Low), среднего (Middle) и верхнего (High) ярусов, соответственно.
  • pp — величина барической тенденции за последние 3 часа, выражается в десятых долях гектопаскаля, знак “+” или “-” перед pp означает соответственно повышение или понижение давления за последние 3 часа.
  • a — характеристика барической тенденции за последние 3 часа, обозначается символами, характеризующими ход изменения давления.
  • w — погода между сроками наблюдений.
  • ww — погода в срок наблюдения.

Предлагается к прочтению:

Метеорологические приборы

приборы и установки для измерения и регистрации значений метеорологических элементов (См. Метеорологические элементы). М. п. предназначены для работы в естественных условиях в любых климатических зонах. Поэтому они должны безотказно работать, сохраняя стабильность показаний в большом диапазоне температур, при большой влажности, выпадении осадков, и не должны бояться больших ветровых нагрузок, пыли. Для сравнения результатов измерений, производимых на различных метеостанциях, М. п. делают однотипными и устанавливают так, чтобы их показания не зависели от случайных местных условий.

Для измерения (регистрации) температуры воздуха и почвы применяют Термометры метеорологические различных типов и термографы. Влажность воздуха измеряют Психрометр ами, Гигрометр ами, гигрографами, атмосферное давление - Барометр ами, Анероид ами, барографами, Гипсотермометр ами. Для измерения скорости и направления ветра применяют Анемометр ы, анемографы, анеморумбометры, анеморумбографы, Флюгер ы. Количество и интенсивность осадков определяют при помощи дождемеров, Осадкомер ов, плювиографов. Интенсивность солнечной радиации, излучение земной поверхности и атмосферы измеряют Пиргелиометр ами, Пиргеометр ами, Актинометр ами, Пиранометр ами, пиранографами, Альбедометр ами, Балансомер ами, а продолжительность солнечного сияния регистрируют Гелиограф ами. Запас воды в снежном покрове измеряют Снегомер ом, росу - росографом, испарение - испарителем (См. Испаритель), видимость - нефелометром и измерителем видимости, элементы атмосферного электричества - Электрометр ами и т. д. Всё большее значение приобретают дистанционные и автоматические М. п. для измерения одного или нескольких метеорологических элементов.

Лит.: Кедроливанский В. Н., Стернзат М. С., Метеорологические приборы, Л., 1953; Стернзат М. С., Метеорологические приборы и наблюдения, Л., 1968; Справочник по гидрометеорологическим приборам и установкам, Л., 1971.

С. И. Непомнящий.


Большая советская энциклопедия. - М.: Советская энциклопедия . 1969-1978 .

Смотреть что такое "Метеорологические приборы" в других словарях:

    Устройства, используемые для измерения и регистрации числовых значений метеорологических элементов. Как правило, на метеорологические приборы устанавливаются специальные стандарты, соответствующие международным нормам измерений. Часто различают… … Географическая энциклопедия

    метеорологические приборы - meteorologiniai prietaisai statusas T sritis Gynyba apibrėžtis Pagrindinių meteorologinių elementų reikšmių matavimo ir registravimo prietaisai. Oro temperatūra matuojama įvairiais termometrais ir termografais; drėgnumas – psichrometrais,… … Artilerijos terminų žodynas

    Технические средства, используемые в практике наблюдений за погодой и получения количественных характеристик состояния атмосферы. Основные виды наблюдений за метеорологическими условиями взлёта и посадки летательного аппарата и полёта их по… … Энциклопедия техники

    Энциклопедия «Авиация»

    метеорологические приборы и оборудование - метеорологические приборы и оборудование — технические средства, используемые в практике наблюдений за погодой и получения количественных характеристик состояния атмосферы. Основные виды наблюдений за метеорологическими условиями взлёта и… … Энциклопедия «Авиация»

    При изучении различных явлений природы приходится иногда встречать такие случаи, которые не могут быть вполне охарактеризованы какими либо отдельными моментами; такие явления приходится изучать непрерывно в течение некоторого более или менее… … Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

    Группа термометров жидкостных (См. Термометр жидкостный) специальной конструкции, предназначенных для метеорологических измерений главным образом на метеорологических станциях. Различные Т. м. в зависимости от назначения отличаются… …

    Приборы для измерений в свободной атмосфере на различных высотах температуры, давления и влажности воздуха, а также солнечной радиации, высоты верхней и нижней границы облачности, турбулентности (См. Турбулентность) атмосферы, содержания… … Большая советская энциклопедия

    Предназначены для обеспечения стрельбы (бинокли, стереотрубы, дальномеры, приборы управления зенитным артиллерийским огнем, панорамы, топопривязчики, гирокомпасы, фотограмметрические, звукометрические, метеорологические и другие приборы) … Большая советская энциклопедия

Эпоха великих открытий и изобретений, отметившая начало нового периода истории человечества, произвела революцию и в естественных науках. Открытие новых стран принесло сведения об огромном количестве физических фактов, неизвестных ранее, начиная с опытного доказательства шарообразности земли и понятия о разнообразии ее климатов. Мореплавание этой эпохи нуждалось в большом развитии астрономии, оптики, знаний правил навигации, свойств магнитной стрелки, знания ветров и морских течений всех океанов. В то время как развитие торгового капитализма служило импульсом ко все более далеким путешествиям и поиском новых морских путей, переход от старого ремесленного производства к мануфактуре требовал создания новой техники.

Этот период был назван веком Ренессанса, но его достижения вышли далеко за рамки возрождения античных наук - он ознаменовался настоящей научной революцией. В XVII в. были заложены основы нового математического метода анализа бесконечно малых, открыты многие основные законы механики и физики, изобретены зрительная труба, микроскоп, барометр, термометр и другие физические приборы. Используя их, быстро начала развиваться экспериментальная наука. Возвещая ее возникновение, Леонардо да Винчи, один из самых блестящих представителей новой эпохи, сказал, что «…мне кажется, что те науки пусты и полны ошибок, которые не кончаются в очевидном опыте, т.е. если их начало или середина, или конец не проходят через одно из пяти чувств». Вмешательство Бога в явления природы было признано невозможным и несуществующим. Наука вышла из-под гнета церкви. Вместе с церковными авторитетами был предан забвению и Аристотель - с середины XVII в. Его творения почти не переиздавались и не упоминались естествоиспытателями.

В XVII в. наука как бы начала создаваться заново. То, что новая наука

должна была завоевать право на существование, вызывало у ученых того времени огромный энтузиазм. Так, Леонардо да Винчи был не только великим художником, механиком и инженером, он был конструктором ряда физических приборов, одним из основателей атмосферной оптики, и то, что он написал о дальности видимости окрашенных объектов сохраняет свой интерес до сих пор. Паскаль - философ, провозгласивший, что мысль человека позволит ему покорить могучие силы природы, выдающийся математик и создатель гидростатики - первый доказал экспериментально убывание атмосферного давления с высотой. Декарт и Локк, Ньютон и Лейбниц - великие умы XVII в., прославившиеся своими философскими и математическими исследованиями - внесли большие вклады в физику, в частности, в науку об атмосфере, которая тогда почти не отделялась от физики.

Во главе этого переворота стояла Италия, где жил и творил Галилей и его ученики Торричелли, Маджиотти и Нарди, Вивиани и Кастелли. Другие страны тоже внесли большой вклад в метеорологию того времени; достаточно вспомнить Ф. Бэкона, Э. Мариотта, Р. Бойля, Хр. Гюйгенса, О. Герике - целый ряд выдающихся мыслителей.

Глашатаем нового научного метода был Ф. Бэкон (1561 - 1626 гг.) -«родоначальник английского материализма и всей опытной науки нашего времени», по выражению Карла Маркса. Бэкон отверг домыслы схоластической «науки», которая, как он справедливо говорил, пренебрегала естествознанием, чуждалась опыта, была скована суеверием и преклонялась перед авторитетами и догматами веры, неустанно говорившей о непознаваемости Бога и его творений. Бэкон провозгласил, что науку поведет вперед союз опыта и рассудка, очищающего опыт и извлекающего из него законы природы, истолкованные последней.

В «Новом Органоне» Бэкона мы находи описание термометра, что дало некоторым даже повод считать Бэкона изобретателем этого прибора. Перу Бэкона принадлежали и соображения об общей системе ветров земного шара, но они не нашли отзыва в творениях авторов XVII - XVIII вв., писавших на ту же тему. Собственные опытные работы Бэкона по сравнению с его философскими исследованиями имеют, тем не менее, второстепенное значение.

Для экспериментальной науки первой половины XVII в., в том числе и для метеорологии, более всего сделал Галилей. То, что он дал метеорологии, прежде казалось второстепенным по сравнению, например, с вкладом Торричелли в эту науку. Теперь мы знаем, однако, что кроме высказанного им впервые представления о весе и давлении воздуха, Галилею принадлежит идея первых метеорологических приборов - термометра, барометра, дождемера. Создание их заложило фундамент всей современной метеорологии.

Рис. 1. Типы ртутных барометров: а -- чашечный, б -- сифонный, в -- сифонно-чашечный.

Рис. 2. Станционный чашечный барометр; К -- кольцо, на котором подвешивается барометр.

Метеорологическая будка

Назначение. Будка служит для предохранения метеорологических приборов (термометров, гигрометра) от дождя, ветра и солнечных лучей.

Материалы:

  • - деревянные бруски 50 x 50 мм длиной до 2,5 м,6 шт.;
  • - фанерные пластины шириной 50--80 мм, длиной до 450 мм, 50 шт.;
  • - петли для форточек, 2 шт.;
  • - доски не толще 20 мм для изготовления дна и крыши будки;
  • - белая краска, масляная или эмалевая;
  • - материал для лесенки.

Изготовление. Из брусков сбивается корпус. Угловые бруски должны образовывать высокие ноги будки. В брусках делаются неглубокие пропилы под углом 45°, в них вставляются фанерные пластины так, чтобы они образовали боковые стенки и через противоположные стенки будки не были видны просветы. Рама передней стенки (дверки) делается из реек и навешивается на петлях. Задняя стенка будки и дверка монтируются из фанерных пластин так же, как боковые стенки. Из досок сбиваются дно и крыша. Крыша должна свешиваться с каждой стороны будки не менее чем на 50 мм, она устанавливается наклонно. Будка красится в белый цвет.

Установка. Будка устанавливается так, чтобы ее дно было на высоте 2 м от поверхности земли. Возле нее из любого материала сооружается постоянная лесенка такой высоты, чтобы лицо наблюдателя, стоящего на ней, было на высоте середины будки.

Эклиметр

Назначение. Измерение вертикальных углов, в том числе высоты небесных светил.

Материалы:

  • - металлическийтранспортир;
  • - нитка с грузиком.

Изготовление. Края основания транспортира изгибаются под прямым углом, на отогнутых частях пробиваются небольшие визирные отверстия на одинаковом расстоянии от горизонтального диаметра транспортира. Изменяется оцифровка шкалы транспортира: 0° ставится там, где обычно стоит 90°, а на местах 0° и 180° пишется 90°. Конец нити закрепляется в центре транспортира, другой конец нити с грузиком свободно свешивается.

Работа с прибором. Сквозь два визирных отверстия наводим прибор на нужный объект (небесное светило или предмет на Земле) и читаем вертикальный угол по нити. Нельзя смотреть на Солнце даже сквозь маленькие отверстия; чтобы определить высоту Солнца, нужно найти такое положение, чтобы солнечный луч проходил через оба визирных отверстия.

Гигрометр

Назначение. Определение относительной влажности воздуха без помощи таблиц.

Материалы:

  • - дощечка 200 x 160 мм;
  • - рейки 20 x 20 мм длиной до 400 мм, 3--4 шт.;
  • - 5--7 светлых человеческих волос длиной 300--350 мм;
  • - гирька или иной грузик весом 5--7 г;
  • - легкая металлическая стрелка длиной 200--250 мм;
  • - проволока, мелкие гвозди.

Волосы нужны женские, они тоньше. Прежде чем срезать 5--7 волосков, нужно тщательно вымыть голову шампунем для жирных волос (даже если волосы нежирные). На стрелке должен быть противовес, чтобы стрелка, будучи посажена на горизонтальную ось, была в безразличном равновесии.

Изготовление. Дощечка служит основанием прибора. На ней монтируется П-образная рамка высотой 250--300, шириной 150--200 мм. На высоте около 50 мм от основания горизонтально крепится перекладина. На ней посередине устанавливается ось стрелки, это может быть гвоздик. Стрелка должна быть надета на него втулкой. Втулка должна вращаться на оси свободно. Внешняя поверхность втулки не должна быть скользкой (на нее можно надеть короткий отрезок тонкой резиновой трубки). К середине верхней перекладины рамки крепятся волосы, к другому концу пучка волос подвешивается грузик. Волосы должны касаться боковой поверхности втулки, нужно сделать ими один полный оборот. Из картона или любого другого материала выкраивается дугообразная шкала и прикрепляется к рамке. Нулевое деление шкалы (полная сухость воздуха) можно с известной долей условности нанести там, где остановится стрелка прибора, на 3--4 минуты положенного в духовку. Максимальную влажность (100%) отметьте по показанию стрелки прибора, помещенного в закрытое полиэтиленовой пленкой ведро, на дно которого налит кипяток. Промежуток между 0% и 100% разделите на 10 равных частей и подпишите десятки процентов. Хорошо, если удастся проконтролировать показания гигрометра, сверив его с психрометром на метеостанции.

Установка. Прибор удобно держать в метеорологической будке; если хотите знать влажность воздуха в помещении, поставьте его в комнате.

Экваториальные солнечные часы

Назначение. Определение истинного солнечного времени.

Материалы:

  • - квадратная доска со стороной от 200 до 400мм;
  • - деревянная или металлическая палочка, можно взять гвоздь 120мм;
  • - циркуль;
  • - транспортир;
  • - масляные краски двух цветов.

Изготовление. Доска -- основание часов окрашивается одним цветом. По основанию краской другого цвета вычерчивается циферблат -- круг, разделенный на 24 части (по 15°). Сверху пишется 0, внизу 12, слева 18, справа 6. В центре часов укрепляется гномон -- деревянный или металлический штырь; нужно, чтобы он был строго перпендикулярен циферблату. Установка. Часы ставятся на любой высоте в месте как можно более открытом, не защищенном от солнечных лучей строениями, деревьями. Основание часов (низ циферблата) располагается в направлении восток--запад. Верхняя часть циферблата поднимается так, чтобы угол между плоскостью циферблата и горизонтальной плоскостью составил 90° минус угол, соответствующий географической широте места. Работа с прибором. Время читается по циферблату по тени, отбрасываемой гномоном. Часы будут работать с конца марта по 20--23 сентября.

Часы показывают истинное солнечное время, не забывайте, что оно отличается от того, по которому мы живем, в некоторых местах довольно значительно. Если хотите, чтобы часы работали и зимой, сделайте так, чтобы гномон прошел насквозь дощечки-основания, он будет служить опорой в ее наклонном положении, а на нижней стороне основания начертите второй циферблат; только на нем цифра 6 будет слева, а 18 -- справа. -- Прим. ред.

Назначение. Определение направления и силы ветра.

Материалы:

  • - деревянный брусок;
  • - жесть или тонкая фанера;
  • - толстая проволока, 5--7 мм;
  • - пластилин или оконная замазка;
  • - масляная краска;
  • - мелкие гвозди.

Изготовление. Корпус флюгера делается из деревянного бруска длиной 110--120 мм, которому придается форма усеченной пирамиды с основаниями 50 x 50 мм и 70 x 70 мм. К противоположным боковым граням пирамиды прибиваются два жестяных или фанерных крыла в виде трапеций высотой около 400мм, с основаниями 50 мм и 200мм; жестяные крылья лучше, они не коробятся от сырости.

В центре бруска просверливается (не насквозь!) отверстие диаметром немного больше диаметра того штыря, на котором будет вращаться флюгер. Внутрь отверстия, в самом его конце, хорошо бы вставить что-то твердое, чтобы при вращении флюгера отверстие не рассверливалось. В торцевую часть флюгера, со стороны противоположной крыльям, вгоняется проволока так, чтобы она выступала на 150--250 мм, а на ее конец надевается шарик из пластилина или оконной замазки. Вес шарика подбирается так, чтобы он уравновешивал крылья, чтобы флюгер не перевешивался назад или вперед. Хорошо, если удастся вместо пластилина или замазки подобрать и хорошо закрепить на проволоке другой, более надежный противовес. Выгибается из проволоки и вставляется вертикально в верхнюю поверхность бруска флюгера, над осью его вращения, прямоугольная рамка высотой 350мм. и шириной 200мм. Рамка должна быть расположена перпендикулярно продольной оси флюгера. На рамку навешивается на петельках (проволочных колечках) жестяная или фанерная дощечка весом 200г и размером 150 x 300 мм. Дощечка должна свободно качаться, но не должна смещаться из стороны в сторону. К одной из боковых стоек рамки прикрепляется фанерная или жестяная шкала силы ветра в баллах. Все деревянные и фанерные детали (а по желанию и остальные) красятся масляной краской.

Установка. Согласно стандарту, флюгер устанавливается на вкопанном в землю столбе или на вышке над крышей здания на высоте 10 м над уровнем земли. Соблюсти это требование довольно сложно, придется исходить из возможностей, учитывая при этом и видимость прибора с высоты человеческого роста. Ось флюгера нужно установить вертикально на столбе, по сторонам которого должны быть штыри, указывающие восемь направлений: С, СВ, В, ЮВ, Ю, ЮЗ, З, СЗ. Из них только на одном, направленном на север, должна быть закреплена хорошо видная буква С.

Работа с прибором. Направление ветра -- это направление, откуда дует ветер, поэтому оно читается по положению противовеса, а не крыльев флюгера. Сила ветра в баллах читается по степени отклонения доски флюгера. Если доска колеблется -- принимается во внимание ее среднее положение; когда наблюдаются отдельные сильные порывы ветра, указывают и максимальную силу ветра. Так, запись «ЮЗ 3 (5)» означает: ветер юго-западный, 3 балла, порывами до 5 баллов.

Метеорологические станции

Волосной гигрометр: 1 -- волос; 2 -- рамка; 3 -- стрелка; 4 -- шкала.

Плёночный гигрометр: 1 -- мембрана; 2 -- стрелка; 3 -- шкала.

Метеорологические приборы, которые использовал Р.Гук в середине XVII века: барометр (а ), анемометр (б ) и компас (в ) определяли давление, скорость и направление ветра как функции времени, разумеется если были часы. Для того чтобы разобраться в причинах и свойствах движения атмосферного воздуха, были нужны многочисленные и достаточно точные измерения, а следовательно, достаточно дешевые и точные приборы. Изображение: «Квант»


Внутреннее устройство анероида.


Расположение метеорологических станций на Земле




Снимки с космических метеорологических станций

ФЕДЕРАЛЬНАЯ СЛУЖБА ПО ГИДРОМЕТЕОРОЛОГИИ

И МОНИТОРИНГУ окружающей СРЕДЫ

Государственное учреждение

"Научно-производственное объединение "Тайфун"

ЦЕНТРАЛЬНОЕ КОНСТРУКТОРСКОЕ БЮРО

ГИДРОМЕТЕОРОЛОГИЧЕСКОГО ПРИБОРОСТРОЕНИЯ

КАТАЛОГ- справочник

Приборы и оборудование для гидрометеорологии и мониторинга загрязнения окружающей среды

ЧАСТЬ 1

Гидрометеорологические приборы и оборудование

Обнинск 2006


Гидрометеорологические ПРИБОРЫ И ОБОРУДОВАНИЕ.. 8

1.1. ПРИБОРЫ ДЛЯ ИЗМЕРЕНИЯ И РЕГИСТРАЦИИ ПАРАМЕТРОВ АТМОСФЕРЫ... 8

1.1.1. Приборы для измерения и регистрации параметров ветра.. 8

Анеморумбометр М63М-1. 8

Анеморумбограф М63МР.. 10

Анемометр сигнальный АС-1. 12

Анемометр ручной электронный АРЭ.. 14

Анемометр цифровой переносной АП1М.. 16

Анемометр сигнальный цифровой М-95-ЦМ.. 18

Анемометр чашечный МС-13. 20

Анемометр крыльчатый АСО-3. 21

Датчик парметров ветра М-127М.. 22

Датчик параметров ветра М-127. 24

Анеморумбометр «Пеленг-СФ-03». 26

Измеритель параметров ветра ИПВ-01. 28

Измеритель параметров ветра ИПВ – 92М.. 32

Флюгеры ФВЛ и ФВТ. 35

Электронный анемометр АПР-2. 37

Анемометр ручной индукционный АРИ-49. 39

1.1.2.Приборы для измерения и регистрации атмосферных осадков.. 41

Датчик жидких осадков «Пеленг СФ-04». 41

Осадкомер Третьякова О-1. 43

Плювиограф П-2М.. 45

1.1.3.Приборы для измерения и регистрации атмосферного давления.. 47

Барометр М-67 (КОНТРОЛЬНЫЙ) 47

Барограф метеорологический анероидный М-22А.. 49

Барометр М-110. 51

Барометр БАММ-1 (метеорологический) 53

Барометр рабочий сетевой БРС-1М.. 55

Барометр рабочий специальный БРС-1с. 57

Блок измерения давления двухканальный БИД-1. 59

Барометр автоматизированный МД-13. 61

Прецизионный измеритель атмосферного давления МД-13 «БАРС». 63

Прецизионный интеллектуальный датчик - измеритель атмосферного давления МД-13 «Сокол» 65

Барометр кварцевый МД-20. 67

1.1.4.Приборы для измерения и регистрации температуры воздуха.. 69

Термограф метеорологический с биметаллическим чувствительным элементом М-16А 69

Термометр метеорологический стеклянный типа ТМ1. 71

Термометр метеорологический стеклянный типа ТМ2. 73

Термометр метеорологический стеклянный типа ТМ4 . 75

Термометр метеорологический стеклянный типа ТМ 6 . 77

Термометр метеорологический стеклянный типа ТМ7. 79

Термометр метеорологический стеклянный типа ТМ9. 80

1.1.5.Приборы для измерения и регистрации влажности воздуха.. 82


Гигрограф М-21А.. 82

Психрометр аспирационный (механический) МВ-4-2М.. 84

Психрометр аспирационный (электрический) М-34М.. 86

Гигрометр М-19. 88

Гигрометр М-19-1. 90

Гигрометры психрометрические ВИТ-1 и ВИТ-2. 91

1.1.6.Приборы для измерения и регистрации лучистой энергии, тепловых потоков в воздухе, продолжительности солнечного сияния.. 93

Пиранометр «Пеленг СФ-06». 93

Модуль актинометрический МА.. 96

Гелиограф универсальный ГУ-1. 98

Метеорологическое обеспечение.. 98

1.1.7. Приборы для измерения и регистрации метеорологической дальности видимости (прозрачности), освещенности, высоты нижней границы облаков. 99

Датчик высоты облаков «ДВО-2». 99

Измеритель высоты облаков «ДВО-2». 101

Регистратор высоты облаков РВО-3. 103

Измеритель нижней границы облаков «Пеленг СД-01-2000» (ИНГО)». 105

Прибор для измерения метеорологической дальности видимости «Пеленг СФ-01». 107

Фотометр импульсный ФИ-2. 109

Измеритель дальности видимости ФИ-3. 111

Дальномер облаков лазерный ДОЛ-1. 114

1.1.8.Приборы для измерения и регистрации комплексов метеорологических элементов.. 116

Термоанемометр ТАМ-М1. 116

Измерители температуры ИТ-2. 119

Измеритель температуры и влажности воздуха МТ-3. 121

Микропроцессорный измеритель относительной влажности и температуры (термогигрометр) ИВТМ-7 МК-С-М. 124

Портативный микропроцессорный прибор для измерения относительной влажности и температуры (термогигрометр) ИВТМ-7 К.. 126

Портативный микропроцессорный регистрирующий термогигрометр ИВТМ-7 М, ИВТМ-7 М2 и ИВТМ-7 М3. 128

Термогигрометр ИВА-6Б2. 130

1.2.ПРИБОРЫ ДЛЯ ИЗМЕРЕНИЯ И РЕГИСТРАЦИИ ПАРАМЕТРОВ ПОЧВЫ И СНЕЖНОГО ПОКРОВА, В ТОМ ЧИСЛЕ ДЛЯ ПРОИЗВОДСТВА АГРОМЕТЕОРОЛОГИЧЕСКИХ НАБЛЮДЕНИЙ И РАБОТ.. 132

1.2.1. Приборы для измерения и регистрации температуры почвы, снежного и растительного покрова, тепловых потоков в почве и снежном покрове 132

Термометр метеорологический стеклянный типа ТМ1. 132

Термометр метеорологический стеклянный типа ТМ2. 134

Термометр метеорологический стеклянный типа ТМ3. 136

Термометр метеорологический стеклянный типа ТМ5. 138

Термометр метеорологический стеклянный типа ТМ10. 140

Термометр почвенный АМ-34. 142

Термометр-щуп АМ-6. 144

Термометр электронно-цифровой АМТ-2. 146

1.2.2. Приборы для измерения и регистрации высоты и плотности снежного покрова и запасов воды в нем... 148

Рейка снегомерная дюралевая М-46. 148

Рейка снегомерная стационарная М-103. 149

Рейка снегомерная переносная М-104. 150

Снегомер весовой ВС-43. 151

Рейка ледоснегомерная ГР-31. 153

1.2.3. Приборы для измерения и регистрации влажности в почве, растительном покрове.. 154

Влагомер многофункциональный ИВДМ-2. 154

1.3.ПРИБОРЫ ДЛЯ ПРОИЗВОДСТВА АЭРОЛОГИЧЕСКИХ НАБЛЮДЕНИЙ.. 156

1.3.1.Приборы для измерения и регистрации комплексов аэрологических элементов.. 156

Автоматизированное рабочее место (АРМ) Аэролога. 156

Аэрологическая радиолокационная станция "БРИЗ". 158

Метеорологический температурный профилемер (МТП5) 160

Малогабаритные аэрологические радиозонды МАРЗ 2-1, 2-2. 162

Радиозонд метеорологический. 164

Малогабаритные радиозонды МРЗ-3А (1780 МГц) 166

Малогабаритные радиозонды МРЗ-3АМ.. 168

Малогабаритные радиозонды МРЗ-3А (1680) 170

Оболочки для радиозондирования атмосферы (№ 400, 500) 172

Радиозонд РФ-95. 173

Малогабаритный аэрологический радиолокатор МАРЛ-А.. 175

1.4. ПРИБОРЫ ДЛЯ ПРОИЗВОДСТВА МОРСКИХ ГИДРОЛОГИЧЕСКИХ НАБЛЮДЕНИЙ И РАБОТ.. 177

1.4.1. Приборы для измерения и регистрации электропроводности воды 177

Электросолемер ГМ-65М.. 177

1.4.2. Приборы для измерения и регистрации уровня воды... 179

Рейка морская водомерная ГМ-3. 179

1.4.3. Приборы для взятия проб донных отложений.. 181

Дночерпатель бентосный. 181

1.4.4. Приборы для измерения и регистрации прозрачности, цветности воды, подводной освещенности.. 182

Диск белый ДБ. 182

1.4.5. Приборы для измерения и регистрации комплексов морских гидрометеорологических элементов.. 183

Измеритель гидрологический ГМУ-2. 183

1.5.ПРИБОРЫ ДЛЯ ПРОИЗВОДСТВА РЕЧНЫХ ГИДРОЛОГИЧЕСКИХ НАБЛЮДЕНИЙ И РАБОТ 186

1.5.1.Приборы для измерения и регистрации элементов волн.. 186

Веха максимально-минимальная волномерная ГР-24. 186

1.5.2. Приборы для измерения и регистрации скорости и направления течения.. 188

Измеритель скорости потока с регистратором ИСП-1. 188

Преобразователь сигналов вертушки ПСВ-1 (регистратор) 190

1.5.3. Приборы для измерения и регистрации уровня воды... 191

Рейка водомерная переносная ГР-104. 191

Уровнемер поплавковый цифровой с однотросовым УПЦО.. 192

Репер грунтовой ГР-43. 194

Свая металлическая ПИ-20. 195

1.5.4. Приборы для измерения и регистрации глубины рек и озер.. 196

Эхолот Практик. 196

1.5.5. Приборы для измерения и регистрации испарения с почвы и водной поверхности.. 198

Испаромер ГГИ-3000. 198

1.5.6. Приборы для отбора проб воды... 199

Батометр-бутылка на штанге ГР-16М.. 199

Батометр Молчанова ГР-18. 200

1.5.7. Приборы для отбора проб донных отложений.. 201

Дночерпатель штанговый ГР-91. 201

Трубка ГОИН ТГ-1.5. 203

1.5.8. Приборы для измерения и регистрации ледовых явлений.. 204

Рейка ледомерная ГР-7М.. 204

1.5.9. Приборы для измерения и регистрации комплексов гидрологических элементов.. 205

Комплекс гидрологический ГРК-1. 205

1.6.СИСТЕМЫ, СТАНЦИИ, КОМПЛЕКСЫ ДЛЯ МЕТЕОРОЛОГИИ, ГИДРОЛОГИИ И ОКЕАНОЛОГИИ.. 208

Комплекс метеорологический наземный МА-6-3. 208

Комплексы метеорологические МК-14. 211

Комплекс метеорологический МК-14-1М.. 214

(модификация МК-14-1) 214

Автоматизированная система метеонаблюдений АСМ.. 215

Комплексная радиотехническая аэродромная метеорологическая станция КРАМС-4. 217

Станция метеорологическая АМС ЛОМО МЕТЕО-02. 220

Автоматизированная метеорологическая станция (АМС) 222

Автоматизированная метеорологическая измерительная система АМИС-1. 224

Дорожно – измерительная станция ДИС-01М.. 225

Станция метеорологическая дистанционная М-49. 227

Станция метеорологическая дистанционная М-49М.. 229

Автоматизированная информационно-измерительная система "ПОГОДА". 231

Комплекты метеорологические полевые КМП.. 232

Мини-зонд метеорологический СТД-2. 234

Комплекс гидрологический ГРС-3. 236

Автоматизированный метеорологический радиолокационный комплекс МЕТЕОЯЧЕЙКА 238

1.7.приборы для активного воздействия на облака и туманы... 240

Противоградовое изделие (ПГИ) «Алан». 240

1.8 ПРИБОРЫ И ОБОРУДОВАНИЕ ДЛЯ ПОВЕРКИ ГИДРОМЕТЕОРОЛОГИЧЕСКИХ ПРИБОРОВ.. 242

Барометр образцовый переносной типа БОП-1М.. 242

Манометр цифровой переносной эталонный МЦП-2Э.. 244

Манометр цифровой прецизионный двухканальный МЦП-2-0,3. 246

Образцовый восьмиканальный измеритель температуры ИТ-2. 248

Пневмоанемометр ПО-30 для поверки аспирационных психрометров. 250

1.9.ОБОРУДОВАНИЕ И УСТРОЙСТВА ВСПОМОГАТЕЛЬНЫЕ ДЛЯ ГИДРОМЕТЕОРОЛОГИЧЕСКИХ НАБЛЮДЕНИЙ И РАБОТ.. 251

1.9.1.Оборудование и устройства вспомогательные для метеорологических, агрометеорологических и актинометрических наблюдений и работ 251

Будки защитные жалюзийные типа БП и БС.. 251

Мачта метеорологическая М-82. 253

Мачта метеорологическая М-82 (1,2,3) (ФГУП НПО «Луч») 255

Бур почвенный объемный АМ-7. 256

Бур почвенный АМ-26М.. 257

Панель индикации ПИ-02. 258

Весовой стаканчик ВС-1. 260

1.9.2.Оборудование и устройства вспомогательные для речных гидрологических наблюдений и работ.. 261

Бур ледовый ручной ГР-113. 261

Бур кольцевой ПИ-8. 262

Вьюшка подвесная ГР-75. 263

Грузы гидрометрические рыбовидные ГГР.. 264

Лебедка гидрометрическая ПИ-24М.. 265

Лот промерный ЛПР-48. 266

Оправа к термометру для воды ОТ-51. 267

Прибор фильтровальный Куприна ГР-60. 268

Установка гидрометрическая дистанционная с ручным приводом ГР-70. 269

Указатель длины троса УДТ. 271

Штанга гидрометрическая ГР-56М.. 272

1.9.3.Оборудование и устройства вспомогательные для морских гидрологических наблюдений и работ.. 273

Грузы гидрометрические ПИ-1. 273

Лебедка батометрическая. 274

Лебедка морская СП-77. 275

Механизм гибкого крепления ГР-78. 276

1.9.4. ОБОРУДОВАНИЕ И УСТРОЙСТВА ВСПОМОГАТЕЛЬНЫЕ ДЛЯ АЭРОЛОГИЧЕСКИХ НАБЛЮДЕНИЙ.. 277

Аэрологический радиолокационный вычислительный комплекс «ВЕКТОР-М». 277

Расходные материалы для радиозондирования атмосферы.. 279

1.10. ПРОЧАЯ ИНФОРМАЦИЯ.. 280

Приемная станция Лиана®.. 280

Приемная станция УниСкан. 282

Приемная станция ЕОСкан. 284

Персональная станция приема СканЭкс. 286

Метеорологический телекоммуникационный комплекс «ТрансМет». 288

Автономный аппаратно-программный комплекс передачи данных "ВИП-Гонец". 294

Интегрированная система документированной связи и обработки информации "АПС-метео" 299

Пакетный контроллер ВИП-М (базовое исполнение) 302

автоматизированная информационная система синоптика-консультанта «МЕТЕОКОНСУЛЬТАНТ» 304

Автоматизированная информационная система "МЕТЕОЭКСПЕРТ". 305

Автоматизированная информационная система синоптика РЦ и АДЦ «МЕТЕОСЕРВЕР». 306

Центр коммутации сообщений "МЕТЕОТЕЛЕКС". 307

Рабочая станция метеорологической автоматизированной радиолокационной сети. 308

АДРЕСА ПРЕДПРИЯТИЙ.. 310


Гидрометеорологические ПРИБОРЫ И ОБОРУДОВАНИЕ

Наблюдения на метеорологических станциях в основном имеют характер измерений и ведутся с помощью специальных измерительных приборов; лишь немногие метеорологические элементы количественно оцениваются без приборов (степень облачности, дальность видимости и некоторые другие). Каче­ственные оценки, например определение характера облаков и осадков, производятся без приборов.

Для сетевых приборов необходима однотипность, облегчаю­щая работу сети и обеспечивающая сравнимость наблюдений.

Метеорологические приборы устанавливаются на площадке станции под открытым небом. Только приборы для измерения атмосферного давления (барометры) устанавливаются в закры­том помещении станции, так как разница между давлением воз­духа под открытым небом и внутри помещения ничтожно мала (практически отсутствует).

Приборы для определения температуры и влажности воздуха защищают от действия солнечной радиации, от осадков и поры­вов ветра, и для этого их помещают в будках особой конструк­ции. Отсчеты по приборам делаются наблюдателем в установ­ленные сроки наблюдений. На станциях устанавливаются также самопишущие приборы, дающие непрерывную автоматическую регистрацию важнейших метеорологических элементов (особенно температуры и влажности воздуха, атмосферного давления и ветра). Самопишущие приборы нередко конструируют так, что их приемные части, помещенные на площадке или на крыше здания, имеют электрическую передачу к пишущим частям, установленным внутри здания.

Принципы ряда метеорологических приборов были пред­ложены еще в XVII-XIX веках. В настоящее время в метеоро­логическом приборостроении наблюдается быстрый прогресс. Создаются новые конструкции приборов с использованием воз­можностей современной техники: термо- и фотоэлементов, полу­проводников, радиосвязи и радиолокации, различных химиче­ских реакций и т. п. Особенно нужно отметить применение в последние годы в метеорологических целях радиолокации. На экране радиолокатора (радара) можно обнаружить скопления облаков, области осадков, грозы и даже большие атмосферные вихри (тропические циклоны) в значительном отдалении от на­блюдателя и прослеживать их эволюцию и перемещение.

Как упоминалось выше, достигнуты большие успехи в конструировании автоматических станций, передающих свои наблю­дения в течение более или менее длительного времени без вме­шательства человека.

Методы аэрологических наблюдений

Наиболее простым видом аэрологических наблюдений яв­ляется ветровое зондирование , т. е. наблюдения над ветром в свободной атмосфере с помощью шаров-пилотов . Так называ­ются небольшие резиновые шары, наполняемые водородом и выпускаемые в свободный полет. Наблюдая в теодолиты за по­летом шара-пилота, можно установить скорость и направление ветра на тех высотах, на которых летит шар. В настоящее время при аэрологических наблюдениях над ветром все шире применя­ются методы радиообнаружения, т. е. радиопеленгация радио­зондов и радиолокация (радиоветровое зондирование), обеспе­чивающие получение сведений о ветре при наличии облачного покрова. Наблюдения над ветром, помимо их научной роли, имеют непосредственное значение для обслуживания действий авиации. Такое, же значение имеет и описываемое ниже темпера­турное зондирование.

Температурным зондированием называются регулярные (обычно два раза в сутки) выпуски в высокие слои атмосферы шаров-зондов с резиновыми оболочками достаточно большого размера, к которым прикреплены автоматические приборы для регистрации температуры, давления и влажности воздуха. До тридцатых годов эти приборы - метеорографы - давали только запись наблюдаемых величин на ленте самописца. На той или иной высоте шар, раздуваясь, лопался, а прибор спускался на землю на втором, дополнительном шаре или на парашюте. Од­нако возвращение прибора в место выпуска зависело при этом от случая, и не могло быть речи о срочном использовании на­блюдений. С 1930 г. распространился метод радиозондирования (впервые примененный в СССР). Прикрепленный к шару при­бор - радиозонд, находясь еще в полете, посылает радиосиг­налы, по которым можно определить значения метеорологиче­ских элементов в высоких слоях.

Метод радиозондирования создал переворот в методах аэрологических наблюдений и во всей современной метеороло­гии. Радиозондовые наблюдения можно без всякого промедле­ния использовать для службы погоды, что особенно повышает их ценность. Благодаря радиозондированию несравнимо возро­сли наши знания о слоях атмосферы до высоты 30-40 км. Од­нако точность показаний современных радиозондов еще недо­статочно велика.

Радиозондирование вытеснило другие методы температур­ного зондирования - подъем метеорографов на змеях, привяз­ных аэростатах, самолетах и пр. Самолет остается, однако важным средством для специальных сложных наблюдений, тре­бующих участия наблюдателя, например для изучения физиче­ского строения облаков, для актинометрических и атмосферно-электрических наблюдений. Для тех же целей применяются аэростаты, а изредка стратостаты с герметически закрытыми гондолами. Последний рекорд высоты подъема на стратостате в США близок к 35 км.

В последние годы начали практиковать выпуски шаров без людей не только с радиозондами, но и с более сложными автоматическими приборами для разного рода наблюдений. Та­кие шары большого диаметра с оболочкой из полиэтилена (трансокеанские зонды) достигают со значительным грузом при­боров высот порядка 30-40 км. Они могут лететь на опреде­ленной заданной высоте (точнее, на заданной изобарической по­верхности, т. е. в слое с одним и тем же атмосферным давле­нием) , находясь при этом в воздухе много дней подряд и передавая радиосигналы. Определение траекторий полета таких шаров имеет значение для изучения переноса воздуха в высоких слоях атмосферы, особенно над океанами и в низких широтах, где сеть аэрологических станций недостаточна.

Для исследования еще более высоких слоев атмосферы производят выпуски метеорологических и геофизических ракет с приборами, показания которых передаются по радио. Потолок подъема ракет в настоящее время стал уже неограниченным.

В 1957-1958 гг. в СССР, а затем в США удалось запустить, первые спутники Земли с автоматическими приборами в выс­шие слои атмосферы. Теперь уже большое количество таких спутников вращается вокруг Земли, причем орбиты некоторых из них достигают высот в десятки тысяч километров. С 1960 г. регулярно запускаются так называемые метеорологические спутники, предназначенные для исследования нижележащих слоев атмосферы. Они фотографируют и передают телевизион­ным путем распределение облачности по Земному шару, а так­же измеряют поступающую от земной поверхности радиацию.

Кроме того, важным методом исследования высших слоев являются наблюдения над распространением радиоволн.