Главная · Освещение · Свойства живых организмов. Усложнение организации живых существ Почему усложнение свойств живых организмов обеспечило устойчивое

Свойства живых организмов. Усложнение организации живых существ Почему усложнение свойств живых организмов обеспечило устойчивое

Историю органического мира на Земле изучают по сохранившимся остаткам, отпечаткам и другим следам жизнедеятельности живых организмов. Она является предметом науки палеон­тологии. Исходя из того, что остатки разных организмов расположены в различных пластах гор­ных пород, была создана геохронологическая шкала, согласно которой историю Земли разделили на определенные промежутки времени: зоны, эры, периоды и века (табл. 6.1).

Эоном называют большой промежуток времени в геологической истории, объединяющий не­сколько эр. В настоящее время выделяют только два зона: криптозой (скрытая жизнь) и фанеро- зой (явная жизнь). Эра - это промежуток времени в геологической истории, являющийся подраз­делением эона, объединяющий, в свою очередь, периоды. В криптозое выделяют две эры (архей и протерозой), тогда как в фанерозое - три (палеозой, мезозой и кайнозой).

Важную роль в создании геохронологической шкалы сыграли руководящие ископаемые - остатки организмов, которые были многочисленны в определенные промежутки времени и хоро­шо сохранились.

Развитие жизни в криптозое. Архей и протерозой составляют большую часть истории жизни (период 4,6 млрд лет - 0,6 млрд лет назад), однако сведений о жизни в тот период недоста­точно. Первые остатки органических веществ биогенного происхождения имеют возраст около 3,8 млрд лет, а прокариотические организмы существовали уже 3,5 млрд лет назад. Первые прокариоты входили в состав специфических экосистем - цианобактериальных матов, благо­даря деятельности которых образовались специфические осадочные породы строматолиты («ка­менные ковры»).

Понять жизнь давних прокариотических экосистем помогло открытие их современных анало­гов - строматолитов в заливе Шарк-Бей в Австралии и специфических пленок на поверхности почвы в заливе Сиваш в Украине. На поверхности цианобактериальных матов расположены фото- синтезирующие цианобактерии, а под их слоем - чрезвычайно разнообразные бактерии других групп и архей. Минеральные вещества, которые оседают на поверхность мата и образовываются за счет его жизнедеятельности, откладываются пластами (приблизительно 0,3 мм в год). Такие примитивные экосистемы могут существовать лишь в непригодных для жизни других организмов местах, и действительно, оба вышеупомянутые местообитания характеризуются чрезвычайно вы­сокой соленостью.

Многочисленные данные свидетельствуют о том, что поначалу Земля имела атмосферу воз­обновляемого характера, в состав которой входили: углекислый газ, водяной пар, оксид серы, а также угарный газ, водород, сероводород, аммиак, метан и т. п. Первые организмы Земли были анаэробами, однако благодаря фотосинтезу цианобактерий в среду выделялся свободный кисло­род, который сначала быстро связывался с восстановителями, находящимися в среде, и лишь по­сле связывания всех восстановителей среда начала приобретать окислительные свойства. О таком переходе свидетельствуют отложение окисленных форм железа - гематита и магнетита.

Около 2 млрд лет назад в результате геофизических процессов практически все несвязанное в осадочных породах железо переместилось к ядру планеты, а кислород начал накапливаться в ат­мосфере из-за отсутствия этого элемента - произошла «кислородная революция». Она явилась переломным этапом в истории Земли, который повлек за собой не только смену состава атмосфе­ры и образование озонового экрана в атмосфере - главной предпосылки для заселения суши, но и состава пород, формирующихся на поверхности Земли.

В протерозое произошло и другое важное событие - возникновение эукариот. В последние годы удалось собрать убедительные доказательства теории эндосимбиогенетического происхожде­ния эукариотической клетки - путем симбиоза нескольких прокариотических клеток. Вероятно, «главным» предком эукариот стали архей, которые перешли к поглощению пищевых частиц пу­тем фагоцитоза. Наследственный аппарат переместился вглубь клетки, сохранив, тем не менее, связь с мембраной благодаря переходу внешней мембраны возникшей ядерной оболочки в мембра­ны эндоплазматической сети.

Поглощенные клеткой бактерии могли не перевариваться, а оставаться живыми и продол­жать свое функционирование. Считают, что митохондрии ведут свое происхождение от пурпур­ных бактерий, утративших способность к фотосинтезу и перешедших к окислению органических веществ. Симбиоз с другими фотосинтезирующими клетками привел к возникновению пластид у растительных клеток. Вероятно, жгутики эукариотических клеток возникли вследствие симби­оза с бактериями, которые, подобно современным спирохетам, были способны к извивающимся движениям. Поначалу наследственный аппарат эукариотических клеток был устроен приблизи­тельно так же, как у прокариот, и лишь позднее, вследствие необходимости управления большой и сложной клеткой, образовались хромосомы. Геномы внутриклеточных симбионтов (митохон­дрий, пластид и жгутиков) в целом сохранили прокариотическую организацию, но большая часть их функций перешла к ядерному геному.

Эукариотические клетки возникали неоднократно и независимо друг от друга. Например, красные водоросли возникли в результате симбиогенеза с цианобактериями, а зеленые водорос­ли - с бактериями-прохлорофитами.

Остальные одномембранные органеллы и ядро эукариотической клетки, согласно эндомем- бранной теории, возникли из впячиваний мембраны прокариотической клетки.

Точное время появления эукариот неизвестно, поскольку уже в отложениях возрастом около 3 млрд лет присутствуют отпечатки клеток, имеющих похожие размеры. Точно эукариоты за­фиксированы в породах возрастом около 1,5-2 млрд лет, но только после кислородной революции (около 1 млрд лет назад) сложились условия, благоприятные для них.

В конце протерозойской эры (не менее 1,5 млрд лет назад) уже существовали и многоклеточ­ные эукариотические организмы. Многоклеточность, как и эукариотическая клетка, неоднократ­но возникала у разных групп организмов.

Существуют различные взгляды на происхождение многоклеточных животных. По одним дан­ным их родоначальниками были многоядерные, подобные инфузориям, клетки, которые затем распались на отдельные одноядерные клетки.

Другие гипотезы связывают происхождение многоклеточных животных с дифференцировкой клеток колониальных одноклеточных. Расхождения между ними касаются возникновения слоев клеток у первоначального многоклеточного животного. Согласно гипотезы гастреи Э. Геккеля, то происходит путем впячивания одной из стенок однослойного многоклеточного организма, как у кишечнополостных. В противовес ей И. И. Мечников сформулировал гипотезу фагоцител- лы, считая предками многоклеточных однослойные шарообразные колонии наподобие вольвокса, которые поглощали пищевые частицы путем фагоцитоза. Клетка, захватившая частицу, теряла жгутик и переходила вглубь организма, где и осуществляла пищеварение, а по окончании процес­са возвращалась на поверхность. Со временем произошло разделение клеток на два слоя с опре­деленными функциями - внешний обеспечивал движение, а внутренний - фагоцитоз. Такой организм И. И. Мечников назвал фагоцителлой.

В течение продолжительного времени многоклеточные эукариоты проигрывали в конкурент­ной борьбе прокариотическим организмам, однако в конце протерозоя (800-600 млн лет тому) вследствие резкого изменения условий на Земле - снижения уровня морей, роста концентрации кислорода, уменьшения концентрации карбонатов в морской воде, регулярных циклов похоло­дания - многоклеточные эукариоты получили преимущества над прокариотами. Если до этого времени встречались только отдельные многоклеточные растения и, возможно, грибы, то с этого момента в истории Земли известны и животные. Из возникших в конце протерозоя фаун лучше других изучены эдиакарская и вендская. Животных вендского периода принято включать в со­став особой группы организмов или относить к таким типам, как кишечнополостные, плоские черви, членистоногие и др. Однако ни у одной из этих групп нет скелетов, что может свидетель­ствовать об отсутствии хищников.

Развитие жизни в палеозойской эре. Палеозойская эра, длившаяся более 300 млн лет, делит­ся на шесть периодов: кембрийский, ордовикский, силурийский, девонский, каменноугольный (карбон) и пермский.

В кембрийском периоде суша состояла из нескольких материков, расположенных преиму­щественно в Южном полушарии. Самыми многочисленными фотосинтезирующими организмами в этот период были цианобактерии и красные водоросли. В толще воды жили фораминиферы и радиолярии. В кембрии появляется огромное количество скелетных животных организмов, о чем свидетельствуют многочисленные ископаемые остатки. Эти организмы относились при­мерно к 100 типам многоклеточных животных, как современным (губки, кишечнополостные, черви, членистоногие, моллюски), так и исчезнувшим, например: огромный хищник аномалока- рис и колониальные граптолиты, которые плавали в толще воды или были прикреплены ко дну. Суша на протяжении кембрия оставалась почти незаселенной, однако процесс почвообразования уже начали бактерии, грибы и, возможно, лишайники, а в конце периода на сушу вышли мало- щетинковые черви и многоножки.

В ордовикском периоде уровень вод Мирового океана поднялся, что привело к затоплению материковых низменностей. Основными продуцентами в этот период были зеленые, бурые и крас­ные водоросли. В отличие от кембрия, в котором рифы строили губки, в ордовике их сменяют ко­ралловые полипы. Расцвет переживали брюхоногие и головоногие моллюски, а также трилобиты (ныне вымершие родственники паукообразных). В этом периоде впервые зафиксированы и хор­довые, в частности бесчелюстные. В конце ордовика произошло грандиозное вымирание, которое уничтожило около 35 % семейств и более 50 % родов морских животных.

Силурийский период характеризуется усилением горообразования, которое привело к осуше­нию материковых платформ. Ведущую роль в фауне беспозвоночных силура играли головоногие моллюски, иглокожие и гигантские ракоскорпионы, тогда как среди позвоночных сохраняется большое разнообразие бесчелюстных и появляются рыбы. В конце периода на сушу вышли первые сосудистые растения - риниофиты и плауновидные, которые начали колонизацию мелководья и приливно-отливной зоны побережий. На сушу вышли и первые представители класса пауко­образных.

В девонском периоде вследствие поднятия суши образовались большие мелководья, которые пересыхали и даже промерзали, поскольку климат становился еще более континентальным, чем в силуре. В морях преобладают кораллы и иглокожие, тогда как головоногие моллюски представ­лены спирально закрученными аммонитами. Среди позвоночных девона расцвета достигли рыбы, причем на смену панцирным пришли и хрящевые, и костные, а также двоякодышащие и кисте- перые. В конце периода появляются первые амфибии, которые сначала жили в воде.

В среднем девоне на суше появились первые леса из папоротников, плаунов и хвощей, которые были заселены червями и многочисленными членистоногими (многоножками, пауками, скорпио­нами, бескрылыми насекомыми). В конце девона появились первые голосеменные. Освоение суши растениями привело к уменьшению выветривания и усилению почвообразования. Закрепление почв привело к возникновению русел рек.

В каменноугольном периоде суша была представлена двумя материками, разделенными океа­ном, а климат стал заметно более теплым и влажным. К концу периода произошло небольшое под­нятие суши, а климат сменился более континентальным. В морях господствовали фораминиферы, кораллы, иглокожие, хрящевые и костные рыбы, а пресные водоемы населяли двухстворчатые моллюски, ракообразные и разнообразные земноводные. В середине карбона возникли мелкие на­секомоядные рептилии, а среди насекомых появились крылатые (тараканы, стрекозы).

Для тропиков были характерны заболоченные леса, в которых доминировали гигантские хво­щи, плауны и папоротники, отмершие остатки которых образовали впоследствии залежи камен­ного угля. В середине периода в умеренной зоне, благодаря их независимости от воды в процессе оплодотворения и наличию семени, началось распространение голосеменных.

Пермский период отличался слиянием всех материков в единый суперконтинент Пангею, от­ступлением морей и усилением континентальности климата до такой степени, что во внутренних районах Пангеи образовались пустыни. К концу периода на суше почти исчезли древовидные папоротники, хвощи и плауны, а господствующее положение заняли засухоустойчивые голосе­менные.

Несмотря на то, что крупные амфибии еще продолжали существовать, возникли разные груп­пы рептилий, в том числе крупных растительноядных и хищных. В конце перми произошло са­мое большое вымирание в истории жизни, так как исчезли многие группы кораллов, трилобиты, большинство головоногих, рыб (в первую очередь хрящевых и кистеперых), а также амфибий. Морская фауна потеряла при этом 40-50% семейств и около 70% родов.

Развитие жизни в мезозое. Мезозойская эра продолжалась около 165 млн лет и характеризо­валась поднятием суши, интенсивным горообразованием и снижением влажности климата. Она делится на три периода: триасовый, юрский и меловой.

В начале триасового периода климат был засушливым, однако позднее вследствие поднятия уровня морей он стал более влажным. Среди растений преобладали голосеменные, папоротники и хвощи, однако древесные формы споровых практически полностью вымерли. Высокого разви­тия достигли некоторые кораллы, аммониты, новые группы фораминифер, двухстворчатых мол­люсков и иглокожих, тогда как разнообразие хрящевых рыб уменьшилось, изменились и группы костных рыб. Господствовавшие на суше рептилии начали осваивать и водную среду, как ихтио­завры и плезиозавры. Из пресмыкающихся триаса до нашего времени дожили крокодилы, гатте- рии и черепахи. В конце триаса появились динозавры, млекопитающие и птицы.

В юрском периоде суперконтинент Пангея раскололся на несколько меньших. Большая часть юры была очень влажной, а к его концу климат стал более засушливым. Доминирующей группой растений были голосеменные, из которых от того времени сохранились секвойи. В морях про­цветали моллюски (аммониты и белемниты, двухстворчатые и брюхоногие), губки, морские ежи, хрящевые и костные рыбы. Крупные амфибии практически полностью вымерли в юрском перио­де, однако появились современные группы земноводных (хвостатые и бесхвостые) и чешуйчатых (ящериц и змей), возросло разнообразие млекопитающих. К концу периода возникли и возмож­ные предки первых птиц - археоптериксы. Однако во всех экосистемах доминировали пресмыка­ющиеся - ихтиозавры и плезиозавры, динозавры и летающие ящеры - птерозавры.

Меловой период получил название в связи с образованием мела в осадочных породах того времени. На всей Земле, кроме приполярных областей, был стойкий теплый и влажный климат. В этом периоде возникли и приобрели широкое распространение покрытосеменные, вытеснявшие голосеменных, что повлекло за собой резкое увеличение разнообразия насекомых. В морях, по­мимо моллюсков, костистых рыб, плезиозавров, вновь появилось огромное количество форами-нифер, раковинки которых и образовали залежи мела, а на суше преобладали динозавры. Лучше приспособленные к воздушной среде птицы начали постепенно вытеснять летающих ящеров.

В конце периода произошло глобальное вымирание, в результате которого исчезли аммониты, белемниты, динозавры, птерозавры и морские ящеры, древние группы птиц, а также некоторые голосеменные. С лица Земли в целом исчезло около 16% семейств и 50% родов животных. Кри­зис в конце мела связывают с падением большого метеорита в Мексиканский залив, однако он, скорее всего, не был единственной причиной глобальных изменений. В ходе последующего похо­лодания выжили только небольшие рептилии и теплокровные млекопитающие.

Развитие жизни в кайнозое. Кайнозойская эра началась около 66 млн лет назад и продолжа­ется до настоящего времени. Она характеризуется господством насекомых, птиц, млекопитающих и покрытосеменных растений. Кайнозой делят на три периода - палеоген, неоген и антропо- ген - последний из которых является самым коротким в истории Земли.

В раннем и среднем палеогене климат оставался теплым и влажным, к концу периода стало прохладнее и суше. Доминирующей группой растений стали покрытосеменные, однако, если в на­чале периода преобладали вечнозеленые леса, то в конце появилось много листопадных, а в за­сушливых зонах образовались степи.

Среди рыб господствующее положение заняли костистые рыбы, а количество видов хрящевых, несмотря на их заметную роль в соленых водоемах, незначительно. На суше из рептилий сохра­нились только чешуйчатые, крокодилы и черепахи, тогда как млекопитающие заняли большую часть их экологических ниш. В середине периода появились основные отряды млекопитающих, в том числе насекомоядные, хищные, ластоногие, китообразные, копытные и приматы. Изоляция материков сделала фауну и флору географически более разнообразными: Южная Америка и Ав­стралия стали центрами развития сумчатых, а другие материки - плацентарных млекопитающих.

Неогеновый период. Земная поверхность в неогене приобрела современный вид. Климат стал более прохладным и сухим. В неогене уже сформировались все отряды современных млекопита­ющих, а в африканских саванах возникло семейство Гоминид и род Человек. К концу периода в приполярных областях континентов распространились хвойные леса, появились тундры, а сте­пи умеренного пояса заняли злаки.

Четвертичный период (антропоген) характеризуется периодическими сменами оледенений и потеплений. Во время оледенений высокие широты покрывались ледниками, резко снижался уровень океана, суживались тропический и субтропический пояса. На близлежащих к ледникам территориях устанавливался холодный и сухой климат, который способствовал формированию холодоустойчивых групп животных - мамонтов, гигантских оленей, пещерных львов и др. Со­путствовавшее процессу оледенения снижение уровня Мирового океана привело к образованию сухопутных мостов между Азией и Северной Америкой, Европой и Британскими островами и т. д. Миграции животных, с одной стороны, привели к взаимообогащению флор и фаун, а с другой, к вытеснению реликтов пришельцами, например, сумчатых и копытных в Южной Америке. Эти процессы, однако, не затронули Австралию, оставшуюся изолированной.

В целом, периодические изменения климата привели к формированию чрезвычайно обильного видового разнообразия, характерного для нынешнего этапа эволюции биосферы, а также оказали влияние на эволюцию человека. На протяжении антропогена несколько видов рода Человек рас­селились из Африки в Евразию. Около 200 тысяч лет назад в Африке возник вид Человек разум­ный, который после продолжительного периода существования в Африке около 70 тысяч лет на­зад вышел в Евразию и около 35-40 тыс. лет назад - в Америку. После периода сосуществования с близкородственными видами он вытеснил их и расселился по всей территории земного шара.

Около 10 тыс. лет назад хозяйственная деятельность человека в умеренно теплых областях земного шара начала оказывать влияние как на облик планеты (распашка земель, выжигание лесов, перевыпас пастбищ, опустынивание и т. д.), так и на животный и растительный мир вследствие сокращения ареалов их обитания и истребления, и вступил в действие антропогенный фактор.

Происхождение человека. Человек как вид, его место в системе органического мира. Гипотезы происхождения человека. Движущие силы и этапы эволюции человека. Человеческие расы, их генетическое родство. Биосоциальная природа человека. Социальная и природная среда, адаптации к ней человека.

Заключение

Отбор благоприятствует сохранению наиболее устойчивых живых систем. Во многих случаях устойчивость может быть повышена путем усложнения системы. "Элементарное усложнение" - это появление новой регуляторной связи. Например, у одноклеточного организма появляется способность в неблагоприятных условиях образовывать толстую оболочку; это может быть достигнуто путем возникновения регуляторной связи: определенные условия активируют ферментную систему, ответственную за образование оболочки клетки. Эта ферментая система существовала и раньше; новообразование (и усложнение) состоит в том, что появилась связь между внешним фактором и интенсивностью работы этой системы. Другой пример: двухсегментный организм, имеющий в каждом сегменте половые железы и органы передвижения, становится более устойчивым, разделив функции между сегментами: передний специализируется для локомоции, задний - для размножения (обе функции при этом выполняются более эффективно). Новообразование здесь состоит в том, что возникает новая регуляторная связь, проявляющаяся в онтогенезе: "если я - передний сегмент, я включаю систему формирования ног; если я - задний сегмент, я включаю систему формирования гонад". Обе системы были и раньше; добавился лишь новый способ их регуляции.

Мы постарались показать, что в организме (представляемом как единая сеть регуляторных взаимодействий) просто в силу взаимосвязанности всех элементов существует огромное количество преадаптаций к возникновению новых регуляторных связей. Поэтому усложнение - появление новой связи - не является ни чем-то невероятным, ни чем-то удивительным.

Появление новой регуляторной связи ведет к появлению новой функции у одного или нескольких элементов сети (например, белков); возникающий при этом конфликт между двумя разными функциями может быть легко снят путем дублирования структуры (например, дупликация гена) с последующим разделением функций между копиями.

Возникновение новых регуляторных связей существенно тормозится лишь необходимостью сохранения целостности и нормального функционирования старой, сложившейся системы (принцип "адаптивного компромисса", см. у А.П.Расницына). Часто одно ключевое новообразование открывает путь для возникновения целого комплекса новшеств (принцип "ключевого ароморфоза", см. у Н.Н.Иорданского).

Важным дополнением к этому общему механизму усложнения является блочный принцип сборки новых систем, который проявляется в таких явлениях, как симбиогенез (образование нового сложного организма из коадаптированного сообщества нескольких простых организмов), формирование новых генов/белков путем комбинирования готовых функциональных блоков/экзонов, горизонтальный обмен генами (формирование сложного генома путем комбинирования готовых блоков из двух или более простых геномов), и т.д.

"Элементарное усложнение" - появление новой регуляторной связи - автоматически ведет к возникновению множества новых "креодов" - незапланированных, случайных отклонений от нормы (например, от нормального развития организма), которые могут проявиться при изменении условий. Попадая в условия, на которые она "не была рассчитана", новая связь (включенная, как мы помним, в единую общую сеть и влияющая в конечном счете на все процессы в организме) может дать различные "непредвиденные" эффекты. Это, с одной стороны, новые преадаптации и новый "материал для отбора". С другой стороны, увеличение числа непредвиденных, случайных отклонений ставит под угрозу целостность и жизнеспособность системы. Справиться с этим побочным эффектом усложнения часто бывает возможно лишь путем дальнейшего усложнения (например, к "забарахлившей" регуляторной связи добавляется новая регуляторная связь, регулирующая ее саму). Таким образом, процесс усложнения становится автокаталитическим и идет с ускорением.

ВИДЕОУРОК

Биологическая система

– целостная система компонентов, выполняющих определенную функцию в живых системах. К биологическим системам относятся сложные системы разного уровня организации: биологические макромолекулы, субклеточные органеллы, клетки, органы, организмы, популяции.

Признаки биологических систем

– критерии, отличающие биологические системы от объектов неживой природы:

1. Единство химического состава. В состав живых организмов входят те же химические элементы, что и в объекты неживой природы. Однако соотношение различных элементов в живом и неживом неодинаково. В неживой природе самыми распространенными элементами являются кремний, железо, магний, алюминий, кислород. В живых же организмах 98% элементарного (атомного) состава приходится на долю всего четырех элементов: углерода, кислорода, азота и водорода.

2. Обмен веществ. К обмену веществ с окружающей средой способны все живые организмы. Они поглощают из среды элементы питания и выделяют продукты жизнедеятельности. В неживой природе также существует обмен веществами, однако при небиологическом круговороте они просто переносятся с одного места на другое или меняют свое агрегатное состояние: например, смыв почвы, превращение воды в пар или лед и др. У живых же организмов обмен веществ имеет качественно иной уровень. В круговороте органических веществ самыми существенными являются процессы синтеза и распада (ассимиляция и диссимиляция – см. дальше), в результате которых сложные вещества распадаются на более простые и выделяется энергия, необходимая для реакций синтеза новых сложных веществ.
Обмен веществ обеспечивает относительное постоянство химического состава всех частей организма и как следствие – постоянство их функционирования в непрерывно меняющихся условиях окружающей среды.

3. Самовоспроизведение (репродукция, размножение) – свойство организмов воспроизводить себе подобных. Процесс самовоспроизведения осуществляется практически на всех уровнях жизни. Существование каждой отдельно взятой биологической системы ограничено во времени, поэтому поддержание жизни связано с самовоспроизведением. В основе самовоспроизведения лежит образование новых молекул и структур, обусловленное информацией, заложенной в нуклеиновой кислоте – ДНК, которая находится в родительских клетках.

4. Наследственность – способность организмов передавать свои признаки, свойства и особенности развития из поколения в поколение. Наследственность обеспечивается стабильностью ДНК и воспроизведением ее химического строения с высокой точностью. Материальными структурами наследственности, передаваемыми от родителей потомкам, являются хромосомы и гены.

5. Изменчивость – способность организмов приобретать новые признаки и свойства; в ее основе лежат изменения материальных структур наследственности. Это свойство как бы противоположно наследственности, но вместе с тем тесно связано с ней. Изменчивость поставляет разнообразный материал для отбора особей, наиболее приспособленных к конкретным условиям существования, что, в свою очередь, приводит к появлению новых форм жизни, новых видов организмов.

6. Рост и развитие. Способность к развитию – всеобщее свойство материи. Под развитием понимают необратимое направленное закономерное изменение объектов живой и неживой природы. В результате развития возникает новое качественное состояние объекта, изменяется его состав или структура. Развитие живой формы материи представлено индивидуальным развитием (онтогенезом) и историческим развитием (филогенезом). Филогенез всего органического мира называют эволюцией.
На протяжении онтогенеза постепенно и последовательно проявляются индивидуальные свойства организмов. В основе этого лежит поэтапная реализация наследственных программ. Индивидуальное развитие часто сопровождается ростом – увеличением линейных размеров и массы всей особи и ее отдельных органов за счет увеличения размеров и количества клеток.
Историческое развитие сопровождается образование новых видов и прогрессивным усложнением жизни. В результате эволюции возникло все многообразие живых организмов на Земле.

7. Раздражимость – это специфические избирательные ответные реакции организмов на изменения окружающей среды. Всякое изменение окружающих организм условий представляет собой по отношению к нему раздражение, а его ответная реакция является проявлением раздражимости. Отвечая на воздействия факторов среды, организмы взаимодействуют с ней и приспосабливаются к ней, что помогает им выжить.
Реакции многоклеточных животных на раздражители, осуществляемые и контролируемые центральной нервной системой, называются рефлексами. Организмы, не имеющие нервной системы, лишены рефлексов, и их реакции выражаются в изменении характера движения (таксисы) или роста (тропизмы).

8. Дискретность (от лат. discretus – разделенный). Любая биологическая система состоит из отдельных изолированных, то есть обособленных или отграниченных в пространстве, но тем не менее, тесно связанных и взаимодействующих между собой частей, образующих структурно-функциональное единство. Так, любая особь состоит из отдельных клеток с их особыми свойствами, а в клетках также дискретно представлены органоиды и другие внутриклеточные образования.
Дискретность строения организма – основа его структурной упорядоченности. Она создает возможность постоянного самообновления системы путем замены износившихся структурных элементов без прекращения функционирования всей системы в целом.

9. Саморегуляция (авторегуляция) – способность живых организмов поддерживать постоянство своего химического состава и интенсивность физиологических процессов (гомеостаз). Саморегуляция осуществляется благодаря деятельности нервной, эндокринной и некоторых других регуляторных систем. Сигналом для включения той или иной регуляторной системы может быть изменение концентрации какого-либо вещества или состояния какой-либо системы.

10. Ритмичность – свойство, присущее как живой, так и неживой природе. Оно обусловлено различными космическими и планетарными причинами: вращением Земли вокруг Солнца и вокруг своей оси, фазами Луны и т.д.
Ритмичность проявляется в периодических изменениях интенсивности физиологических функций и формообразовательных процессов через определенные равные промежутки времени. Хорошо известны суточные ритмы сна и бодрствования у человека, сезонные ритмы активности и спячки у некоторых млекопитающих и многие другие. Ритмичность направлена на согласование функций организма с периодически меняющимися условиями жизни.

11. Энергозависимость. Биологические системы являются «открытыми» для поступления энергии. Под «открытыми» понимают динамические, т.е. не находящиеся в состоянии покоя системы, устойчивые лишь при условии непрерывного доступа к ним веществ и энергии извне. Живые организмы существуют до тех пор, пока в них поступают из окружающей среды энергия и вещества в виде пищи. В большинстве случаев организмы используют энергию Солнца: одни непосредственно – этофотоавтотрофы (зеленые растения и цианобактерии), другие опосредованно, в виде органических веществ потребляемой пищи, – это гетеротрофы (животные, грибы и бактерии).


Вариант 1.

1! Из клеток состоят:

а) растения

б) грибы

в) люди

г) горные породы

а) воды

б) любых веществ

в) веществ, необходимых для роста

г) веществ, необходимых для жизни

а) дыхания

б) выделения

в) питания

г) движения

а) люди

б) животные

в) грибы

г) растения

б) животные растут всю жизнь

в) животные двигаются всю жизнь

а) семя превратилось в растение

б) щенок вырос в собаку

г) маленькое дерево стало большим

Тест № 1 по теме: «Основные свойства живого»


Вариант 2.

а) кошки

б) рябины

в) змеи

г) телевизора

а) энергию для жизни

б) вещества для «строительства» тела

г) только вещества, необходимые для роста

а) дыханием

б) реакцией

в) движением

г) раздражимостью

а) все живые организмы состоят из клеток

б) растения питаются готовыми органическими веществами

в) все живые организмы размножаются

а) им нужно больше пищи

б) им нужно больше энергии

в) они должны свою пищу поймать или найти

г) они состоят из клеток и размножаются

Тест № 1 по теме: «Основные свойства живого»


Вариант 3.

1! Из невидимых глазом клеток построены:

а) Луна

б) ваши родители

в) кочан капусты

г) деревянная скамейка

2!* Живые организмы получают энергию благодаря:

а) питанию

б) движению

в) дыханию

г) выделению

3! Двигаться могут:

а) микробы

б) растения

в) животные

г) только листья растений

4! Найдите ошибочные утверждения:

а) бактерии состоят из одной клетки

б) животные растут всю жизнь

в) животные двигаются все время

г) растения выделяют кислород

5! Выделение помогает организму избавиться от:

а) лишних питательных веществ

б) ядовитых веществ

в) непереваренных веществ

г) лишней энергии

6. Найдите верные утверждения:

а) если двигается, то живое

б) дышат только животные

в) к выделению отходов способны только животные

г) если размножается, то живое

Тест № 1 по теме: «Основные свойства живого»


Вариант 4.

1! Из клеток состоят:

а) горные породы

б) растения

в) люди

г) грибы

2! Питание – это поступление в организм:

а) веществ, необходимых для жизни

б) веществ, необходимых для роста

в) любых веществ

г) воды

3. Ядовитые, ненужные и лишние вещества организмы удаляют с помощью:

а) выделения

б) дыхания

в) питания

г) движения

4! В течение всей жизни растут:

а) грибы

б) животные

в) люди

г) деревья

5! Найдите верные утверждения:

а) бактерии состоят из одной клетки

б) растения выделяют кислород

в) дышат только грибы

г) животные растут всю жизнь

6! О развитии можно говорить, если:

а) маленькое дерево стало большим

б) семя превратилось в растение

в) листья повернулись к свету

г) щенок вырос в собаку

Тест № 1 по теме: «Основные свойства живого»


Вариант 5.

1! Внутри много маленьких клеток у:

а) окуня

б) рябины

в) телевизора

г) змеи

2! Благодаря пище живые организмы получают:

а) только вещества, необходимые для роста

б) энергию для жизни

в) вещества для «ремонта» тела

г) вещества для «строительства» тела

3!* Ответные действия называют:

а) реакцией

б) движением

в) раздражимостью

г) дыханием

4! Найдите верные утверждения:

а) растения питаются готовыми органическими веществами

б) все живые организмы размножаются

в) все живые организмы состоят из клеток

г) основной источник кислорода на Земле – растения

5. Животные больше двигаются чем растения потому, что:

а) им нужно больше пищи

б) они должны свою пищу поймать или найти

в) они состоят из клеток и размножаются

г) им нужно больше энергии

1Сравните строение растительных и животных тканей.2 объясните почему клетку считают основной единицей строения живых организмов.3 объясните почему знания

о живых организмах важны каждому человеку

1. Термин экология ввел 2. основатель биогеографии 3. Раздел биологии, изучающий взаимоотношения живых организмов между собой и с неживой природой. 4.

в качестве самостоятельной науки экология начала развиваться 5. направление движения естественному отбору диктует 6. Факторы окружающей среды, воздействует на организм 7. Группа экологических факторов, обусловленная влиянием живых организмов 8. Группа экологических факторов, обусловлена влиянием живых организмов 9 . Группа экологических факторов, обусловленная влиянием неживой природы 10. Фактор неживой природы, дающий толчок сезонным изменениям в жизни растений и животных. 11. способность живых организмов иметь свои биологические ритмы в зависимости от длины светового дня 12. Самый значимый для выживания фактор 13. Свет, химический состав воздуха, воды и почвы, атмосферное давление и температура относиться к факторам 14. строительство железных дорог, распашка земель, создание шахт относяться 15. Хищничество или симбиоз относиться к факторам 16. растения длинногодн обитают 17. растения короткого дня обитания 18.растени тундры относиться 19.РАстения полупустынь,степей и пустынь относиться 20. Характерный показатель популяции. 21. Совокупность всех видов живых организмов, населяющих определенную территорию и взаимодействующих между собой 22. Наиболее богатая видовым разнообразием экосистема нашей планеты 23. экологическая группа живых организмов, создающих органические вещества 24. экологическая группа живых организмов,потребляющие готовые органические вещества, но не проводящих минерализации 25. экологическая группа живых организмов,потребляющих готовые органические вещества и способствующих полному превращению их в минеральные вещества 26 . полезной энергии на следующий трофический(пищевой) уровень переходит 27 . консументы I порядка 28. консументы IIили III порядка 29. мера чувствительности сообществ живых организмов к изменениям определенных условий 30.способность сообществ (экосистем или биогеоценозов) поддерживать свое постоянство и противостоять извенению условий окружающей среды 31. низкая способность к саморегуляции, видовое разнообразие, использование дополнительных источников энергии и высокая продуктивность характерны для 32. искусственный биоценоз с наибольшей интенсивностью обмена веществ на единицу площади. с вовлечением круговорот новых материалов и выделением большого количества неутилизируемых отходов характерны для 33. пахотными землями занято 34. города занимают 35. оболочка планеты, заселенная живыми организмами 36. автор учении о биосфере 37. верхняя граница биосферы 38. граница биосферы в глубинах океана. 39 нижняя граница биосферы в литосфере. 40 . международная неправительственная организации, созданная в 1971 году, совершающая наиболее действенные акции в защиту природы.

Очень нужно, помогите завтра здавать. Приведи примеры, подтверждающие верность утверждений. 1) Живые организмы связаны с гидросферой. наличие

жидкой воды- необходимое условие жизни. 2) Почва - среда обитания многих живых организмов и источник водных растворов минеральных солей. 3) В результате газообмена живые организмы взаимодействуют с атмосферой.

1. Наука, изучающая историю живых организмов на Земле по сохранившимся в осадочных горных породах остаткам, это: 1) Эмбриология 2)

Палеонтология

3) Зоология

4) Биология

2. Самые крупные отрезки времени:

3) Периоды

4) Подпериоды

3. Архей- эра:

4. Формирование озонового слоя началось в:

2) Кембрии

3) Протерозое

5. Первые эукариоты появились в:

1) Криптозое

2) Мезозое

3) Палезое

4) Кайнозое

6. Разделение суши на материки произошло в:

1) Криптозое

2) Палеозое

3) Мезозое

4) Кайнозое

7. Трилобиты- это:

1) Древнейшие членистоногие

2) Древние насекомые

3) Древнейшие птицы

4) Древние ящеры

8. Первые наземные растения были:

1) Лишены листьев

2) Лишены корней

9. Потомками рыб, которые вышли на сушу первыми, являются:

1) Амфибии

2) Рептилии

4) Млекопитающие

10. Древняя птица археоптерикс сочетает в себе признаки:

1) Птиц и млекопитающих

2) Птиц и пресмыкающихся

3) Млекопитающих и земноводных

4) Земноводных и птиц

11. Не является заслугой Карла Линнея:

1) Введение бинарной номенклатуры

2) Классификация живых организмов

12. Неклеточными формами жизни являются:

1) Бактерии

3) Растения

13. К эукариотам не относятся:

1) Амеба протей

2) Лишайник

3) Сине- зеленые водоросли

4) Человек

14. К одноклеточным не относится:

1) Белый гриб

2) Эвглена зеленая

3) Инфузория туфелька

4) Амеба протей

15. Является гетеротрофом:

1) Подсолнух

3) Земляника

16. Является автотрофом:

1) Белый медведь

2) Трутовик

4) Плесень

17. Бинарная номенклатура:

1) Двойное название организмов

2) Тройное название организмов

3) Название класса млекопитающих

Живые системы имеют общие признаки:
1. Единство химического состава свидетельствует о единстве и связи живой и неживой материи.

Пример:

В состав живых организмов входят те же химические элементы, что и в объекты неживой природы, но в других количественных соотношениях (т.е. живые организмы обладают способностью избирательного накопления и поглощения элементов). Более 90 % химического состава приходится на четыре элемента: С, O, N, H, которые участвуют в образовании сложных органических молекул (белков, нуклеиновых кислот, углеводов, липидов).

2. Клеточное строение (Единство структурной организации). Все существующие на Земле организмы состоят из клеток. Вне клетки жизни нет.
3. Обмен веществ (Открытость живых систем) . Все живые организмы представляют собой "открытые системы".

Открытость системы - свойство всех живых систем связанное с постоянным поступлением энергии извне и удалении продуктов жизнедеятельности (организм жив, пока в нем происходит обмен веществами и энергией с окружающей средой).

Обмен веществ - совокупность биохимических превращений, происходящих в организме и других биосистемах.

Обмен веществ состоит из двух взаимосвязанных процессов: синтеза органических веществ (ассимиляции) в организме (за счет внешних источников энергии – света и пищи) и процесса распада сложных органических веществ (диссимиляции) с выделением энергии, которая затем расходуется организмом. Обмен веществ обеспечивает постоянство химического состава в непрерывно меняющихся условиях окружающей среды.
4. Самовоспроизведение (Репродукция) - способность живых систем воспроизводить себе подобных. Способность к самовоспроизведению является важнейшим свойством всех живых организмов. В её основе лежит процесс удвоения молекул ДНК с последующим делением клеток.
5. Саморегуляция (Гомеостаз) - поддержание постоянства внутренней среды организма в непрерывно меняющихся условиях окружающей среды. Любой живой организм обеспечивает поддержание гомеостаза (постоянства внутренней среды организма). Стойкое нарушение гомеостаза ведет к гибели организма.
6. Развитие и рост . Развитие живого представлено индивидуальным развитием организма (онтогенезом) и историческим развитием живой природы (филогенезом).

  • В процессе индивидуального развития постепенно и последовательно проявляются индивидуальные свойства организма и осуществляется его рост (все живые организмы растут в течение своей жизни).
  • Результатом исторического развития является общее прогрессивное усложнение жизни и все многообразие живых организмов на Земле. под развитием понимают как индивидуальное развитие, так и историческое развитие.

7. Раздражимость - способность организма избирательно реагировать на внешние и внутренние раздражители (рефлексы у животных; тропизмы, таксисы и настии у растений).
8. Наследственность и изменчивость представляют собой факторы эволюции, так как благодаря им возникает материал для отбора.

  • Изменчивость - способность организмов приобретать новые признаки и свойства в результате влияния внешней среды и/или изменений наследственного аппарата (молекул ДНК).
  • Наследственность - способность организма передавать свои признаки последующим поколениям.

9. Способность к адаптациям - в процессе исторического развития и под действием естественного отбора организмы приобретают приспособления к условиям окружающей среды (адаптации). Организмы, не обладающие необходимыми приспособлениями, вымирают.
10. Целостность (непрерывность) и дискретность (прерывность) . Жизнь целостна и в то же время дискретна. Эта закономерность присуща как структуре, так и функции.

Любой организм представляет собой целостную систему, которая, в то же время, состоит из дискретных единиц - клеточных структур, клеток, тканей, органов, систем органов. Органический мир целостен, поскольку все организмы и происходящие в нем процессы взаимосвязаны. В то же время он дискретен, так как складывается из отдельных организмов.

Отдельные свойства, перечисленные выше, могут быть присущи и неживой природе.

Пример:

Для живых организмов характерен рост, но ведь и кристаллы растут! Хотя этот рост не имеет тех качественных и количественных параметров, которые присущи росту живого.

Пример:

Для горящей свечи характерны процессы обмена и превращения энергии, но она не способна к саморегуляции и самовоспроизведению.