Главная · Электробезопасность · Трехфазный генератор тока обмотки. Соединение обмоток генератора и потребителей электрической энергии звездой

Трехфазный генератор тока обмотки. Соединение обмоток генератора и потребителей электрической энергии звездой

§ 62. СОЕДИНЕНИЯ ОБМОТОК ГЕНЕРАТОРА

На рис. 65 показана схема генератора, у которого имеются три независимые однофазные цепи. Э.д.с. в этих цепях одинаковы, имеют одинаковые амплитуды и сдвинуты по фазе на 1/3 периода. К каждой паре зажимов обмотки статора генератора можно под­ключить провода, подводящие ток к нагрузке. Эти три фазы выгод­нее объединить в одну общую трехфазную систему. Для этого об­мотки генератора соединяют между собой звездой или треуголь­ником.

При соединении обмоток генератора звездой (рис. 66) концы всех трех фаз X, Y и Z (или начала A, В и С) соединяются между собой, а от начала (или концов) выводятся провода, отводящие энергию в сеть. Полученные таким образом три провода называются линейными, а напряжение между любыми двумя линейными проводами - линейными напряжениями U л. От общей точки соединений концов (или начал) трех фаз (от нулевой точки звезды) может

быть отведен четвертый провод, называемый нулевым. Напряжение между любым из трех линейных проводов и нулевым проводом рав­но напряжению между началом и концом одной фазы, т. е. фазному напряжению U ф.

Обычно все фазы обмотки генератора выполняют одинаковыми так, что действующие значения э. д. с. в фазах равны, т. е. Е A = Е B =Е C . Если в цепь каждой фазы генератора включить нагрузку,

то по этим цепям будут проте­кать токи. В случае одинакового по величине и характеру сопротивления всех трех фаз приемника, т. е. при рав­номерной нагрузке, токи в фазах рав­ны по силе и сдвинуты по фазе относи­тельно своих напряжений на один и тот же угол j. Как максимальные, так и действующие значения фазных напря­жений при равномерной нагрузке рав­ны, т. е. U A = U B =U C . Эти напряжения сдвинуты по фазе на 120°, как показана на векторной диаграмме (рис. 67). Напряжение между любыми точками схемы (см. рис. 66) соответствует век­торам (рис. 67) между теми же точка­ми. Так, например, напряжение между точками A и О схемы (фазное напряжение U А) соответствует векто­ру A-O диаграммы, а напряжение между линейными проводами А и В схемы - вектору линейного напряжения АВ диаграммы. По векторной диаграмме легко установить соотношение между линей­ным и фазным напряжением. Из треугольника АОа можно запи­сать следующее соотношение:

т, е. при соединении обмоток генератора звездой линейное напря­жение в = 1,73 раза больше фазного (при равномерной нагрузке).

Из схемы (см. рис. 66) видно, что при соединении обмоток генератора звездой ток в линейном проводе равен току в фа­зах генератора, т. е. Iл=Iф.

На основании первого закона Кирхго­фа можем записать, что ток в нулевом проводе равен геометрической сумме то­ков в фазах генератора, т. е.

При равномерной нагрузке токи в фа­зах генератора равны между собой и сдвинуты по фазе на 1/3 периода. Геометрическая сумма токов трех фаз в этом случае равна нулю, т. е. в ну­левом проводе тока не будет. Поэтому при симметричной нагрузке нулевой провод может отсутствовать. При несимметричной нагруз­ке ток в нулевом проводе не равен нулю, но обычно нулевой провод имеет меньшее поперечное сечение, чем линейные.

При соединении обмоток генератора треугольником (рис. 68) на­чало (или конец) каждой фазы соединяется с концом (или началом) другой фазы. Таким образом, три фазы генератора образуют за­мкнутый контур, в котором действует э. д. с, равная геометриче­ской сумме э. д. с, индуктированных в фазах генератора, т. е. Еа+Ев +Ес. Так как э. д. с. в фазах генератора равны и сдвинуты

на 1/3 периода по фазе, то геометрическая сумма их равна нулю и, следова­тельно, в замкнутом кон­туре трехфазной системы, соединенной треугольни­ком, никакого тока при отсутствии внешней на­грузки не будет.

Линейные провода при соединении треугольни­ком подключаются к точ­кам соединения начала одной фазы и конца другой. Напряжение между линейными проводами равно напряжению между началом и концом одной фазы Таким образом при соединении обмоток генератора треугольником линейное напряжение равно фазному, т. е.

При равномерной нагрузке в фазах обмоток генератора протекают равные токи, сдвинутые относительно фазных напряжений на одинаковые углы j, т. е. I AB = I BC =I CA

На рис. 69, а изображена векторная диаграмма, на которой показаны векторы фазных напряжений и токов.

Точки соединений фаз и линейных проводов А, В и С являются точками разветвления, и линейные токи не равны фазным. Приняв за положительное направление фазных и линейных токов, указанное на рис. 69, на основании первого закона Кирхгофа для мгновенных значений токов можно написать следующие выражения:

i A = i AB - i CA ; i B = i BC - i AB ; i C = i CA­ - i BC

Так как токи синусоидальны, то заменим алгебраическое вычитание мгновенных значений токов геометрическим вычитанием векторов, изображающих их действующие значения:

Ток линейного провода АI А определится геометрической разностью: векторов фазных токов I AB и I CA .

Для построения вектора линейного тока I A изобразим вектор фазного тока I AB (рис. 69,6), из конца которого построим вектор -I CA , равный и противоположно направленный вектору I CA . Век­тор, соединяющий начало вектора I AB с концом вектора -I CA , является вектором линейного тока I A Аналогично могут быть построены векторы линейных токов I B и I C .

При работе 3-х фазного генератора в каждой его обмотке создается ЭДС в форме синусоидального колебания. Все вектора разнесены по углу вращения на 120° и могут быть описаны формулами:

e А =Е m sinωt, E А =Ефe j0° ;
e В =Е m sin(ωt-120°), E В =Ефe -j120° ;
e С =Е m sin(ωt-240°)=Е m sin(ωt+120°), E С =Ефe j120° .

Для подключения обмоток генератора в связанную систему применяется одна из двух схем:

- “звезда” (Y);
- “треугольник” (Δ).


“Звезда” . Для схемы “звезды” все выходы обмоток фаз статора подключают к единой общей точке N , именуемую нейтральной либо нулевой точкой. Входа (начала) обмоток каждой фазы А, В и С подключают к линейным выводам генератора.

“Треугольник” . Для этой схемы соединения формируют выходные фазы:

- “А” подключением выхода обмотки А ко входу обмотки C ;
- “В” подключением выхода обмотки В ко входу обмотки А ;
- “С” подключением выхода обмотки С ко входу обмотки В .

Точки подключения А, В и С используются как линейные выводы у генератора.



Векторные диаграммы . У работающего генератора , обмотки которого соединены по схеме “звезда” диаграмма векторов напряжений имеет форму равностороннего треугольника с центром в начале координат и расположенного симметрично относительно оси ординат.

Его стороны представлены векторами линейных напряжений с направлением вращения противоположным ходу часовой стрелки. Вектора фазных напряжений соединяют центр треугольника с вершинами по направлению от начала координат.

Под термином фазного напряжения понимают разность потенциалов между общим выводом N и линейным А, В или С и маркируют: U A , U B , U C . Напряжения в фазах генератора равны ЭДС обмоток: Е А =U А, Е В =U В, Е С =U С .

Линейное напряжение генератора измеряется между двумя любыми его выводами и обозначается по наименованию выбранных фаз: U AВ, U BС, U CА . Величина вектора линейного напряжения определяется геометрической разностью векторов соответствующих фаз:

U AВ =U A -U В;
U BС =U В -U С;
U CА =U С -U A .

У генератора с обмотками соединенными по схеме “треугольник” диаграмма векторов напряжений тоже имеет форму равностороннего треугольника, но он относительно центра координат провернут на 30° по направлению движения часовой стрелки.

Соотношения линейных и фазных напряжений для генератора, собранного по схеме “треугольника”, остаются теми же, что и для генератора, работающего по схеме “звезда”.

Расчеты параметров трехфазных сетей проводятся математическими способами (например, комплексный метод) и способами геометрических сложений.

Для этого выбирают один из векторов в качестве начального, ориентируют его в комплексной плоскости с учетом направления и величины. Остальные вектора достраивают по углам сдвига их фаз относительно выбранного начального вектора с учетом их величин.

Обычные расчеты для схемы соединения “звезда” проще начинать с определения напряжения вектора фазы А , который в данной системе выходит из начала координат комплексной плоскости в направлении на север. Выражения фазных напряжений в комплексной форме для такого расчета описываются формулами:

U А =Uфe j0° ;
U В =Uфe -j120° ;
U С =Uфe j120°
.

Формулы для линейных векторов имеют следующий вид:

U АВ =Uлe j30° ;
U ВС =Uлe -j90° ;
U СА =Uлe j150° .

Для схем “треугольник” за начальный отсчет принимают вектор линейного напряжения U АВ . Формулы вычисления фазных векторов напряжений принимают выражения:

U А =Uфe -j30° ;
U В =Uфe -j150° ;
U С =Uфe j90° .

Вектора линейных напряжений описываются формулами:

U АВ =Uлe j0° ;
U ВС =Uлe -j120° ;
U СА =Uлe j120° .

Проведя геометрические вычисления не сложно определить линейную величину вектора по значению фазной:

U л =2U ф cos30°=2U ф √3/2=U ф √3.

Важно! Схема соединения обмоток “треугольник” для генератора практически не пригодна для реального использования, поэтому ее запрещено применять.

В фазах схемы “треугольник” образуется общий контур, у которого возникает суммарная ЭДС Σe=e AB +e BC +e CA . Значения полных сопротивлений в обмотках маленькие и даже небольшая величина суммарной ЭДС Σe>0 вызывает в магистралях “треугольника” уравнительные токи, которые сопоставимы с номинальным значением тока в генераторе. Это создает большие потери энергии и значительно уменьшает КПД генератора.

У энергетиков существует определение номинального напряжения для 3-х фазной системы. Им называют линейные напряжения, которые выражаются в киловольтах (кВ, kV). Их представляют значениями 0,4; 1,1; 3,5; 6,3; 10,5; 22; 35; 63; 110; 220; 330; 500; 750.

Для потребителей электроэнергии номинальную величину 3-х фазного напряжения допускается указывать соотношениями линейных и фазных напряжений U Л /U Ф . Для электросети 0,4 кВ оно будет иметь вид: 380/220 вольт.


Знаете ли Вы, что такое мысленный эксперимент, gedanken experiment?
Это несуществующая практика, потусторонний опыт, воображение того, чего нет на самом деле. Мысленные эксперименты подобны снам наяву. Они рождают чудовищ. В отличие от физического эксперимента, который является опытной проверкой гипотез, "мысленный эксперимент" фокуснически подменяет экспериментальную проверку желаемыми, не проверенными на практике выводами, манипулируя логикообразными построениями, реально нарушающими саму логику путем использования недоказанных посылок в качестве доказанных, то есть путем подмены. Таким образом, основной задачей заявителей "мысленных экспериментов" является обман слушателя или читателя путем замены настоящего физического эксперимента его "куклой" - фиктивными рассуждениями под честное слово без самой физической проверки.
Заполнение физики воображаемыми, "мысленными экспериментами" привело к возникновению абсурдной сюрреалистической, спутанно-запутанной картины мира. Настоящий исследователь должен отличать такие "фантики" от настоящих ценностей.

Релятивисты и позитивисты утверждают, что "мысленный эксперимент" весьма полезный интрумент для проверки теорий (также возникающих в нашем уме) на непротиворечивость. В этом они обманывают людей, так как любая проверка может осуществляться только независимым от объекта проверки источником. Сам заявитель гипотезы не может быть проверкой своего же заявления, так как причина самого этого заявления есть отсутствие видимых для заявителя противоречий в заявлении.

Это мы видим на примере СТО и ОТО, превратившихся в своеобразный вид религии, управляющей наукой и общественным мнением. Никакое количество фактов, противоречащих им, не может преодолеть формулу Эйнштейна: "Если факт не соответствует теории - измените факт" (В другом варианте " - Факт не соответствует теории? - Тем хуже для факта").

Максимально, на что может претендовать "мысленный эксперимент" - это только на внутреннюю непротиворечивость гипотезы в рамках собственной, часто отнюдь не истинной логики заявителя. Соответсвие практике это не проверяет. Настоящая проверка может состояться только в действительном физическом эксперименте.

Эксперимент на то и эксперимент, что он есть не изощрение мысли, а проверка мысли. Непротиворечивая внутри себя мысль не может сама себя проверить. Это доказано Куртом Гёделем.

При соединении обмоток звездой концы обмоток X, Y, Z соединяются в одну точку, называемую нулевой точкой или нейтралью генератора (рис. 7-5). В четырехпроводной системе к нейтрали присоединяется нейтральный или нулевой провод. К началам обмоток генератора присоединяются три линейных провода.

Напряжения между началами и концами фаз, или, что то же, напряжения между каждым из линейных проводов и нулевым называются фазными напряжениями и обозначаются или в общем виде

Пренебрегая падением напряжения в обмотках генератора, можно считать фазные напряжения равными соответствующим э. д. с., индуктированным в обмотках генератора.

Напряжения между началами обмоток, или, что то же, между линейными проводами, называются линейными напряжениями и обозначаются или в общем виде

Установим соотношение между линейными и фазными напряжениями при соединении обмоток генератора звездой.

Рис. 7-5. Схема соединения обмоток генератора звездой.

Рис. 7-6. Векторная диаграмма напряжений трехфазной цепи.

Так как конец первой фазы X соединен не с началом второй фазы, а с концом ее Y, что аналогично встречному соединению двух источников э. д. с. при постоянном токе, то мгновенное значение линейного напряжения между проводами А и В будет равно разности соответствующих фазных напряжений, т. е.

аналогично мгновенные значения других линейных напряжений

Таким образом, мгновенное значение линейного напряжения равно алгебраической разности мгновенных значений соответствующих фазных напряжений.

Так как изменяются по синусоидальному закону и имеют одинаковую частоту, то и линейные напряжениябудут изменяться синусоидально, причем действующие значения линейных напряжений можно определить из векторной диаграммы (рис. 7-6):

Из сказанного следует, что вектор линейного напряжения равен разности векторов соответствующих фазных напряжений.

Фазные напряжения сдвинуты друг от друга на 120°. Для определения вектора линейного напряженияиз вектора напряжениянужно геометрически вычесть вектор, или, что то же, прибавить равный по величине и обратный по знаку вектор -.

Аналогично вектор линейного напряжения получим как разность векторов напряженийи вектор линейногонапряжения как разность векторови ОА.

Опуская перпендикуляр из конца произвольно взятого вектора фазного напряжения, например , на вектор линейного напряженияполучим прямоугольный треугольник ОНМ, из которого следует, что

Рис. 7-7. Векторная диаграмма напряжений при соединении обмоток генератора звездой.

Из векторной диаграммы (рис. 7-6) и последней формулы следует, что действующее значение линейного напряжения в раз больше действующего значения фазного напряжения и что линейное напряжениена 30° опережает фазное напряжение; на такой же угол линейное напряжениеопережает фазное напряжениеи напряжение- фазное напряжение

Смежные, линейные напряжения сдвинуты друг относительно друга на такие же углы (120°), как и смежные фазные напряжения. Звезда векторов линейных напряжений повернута в положительную сторону относительно звезды векторов фазных напряжений на угол 30°.

Необходимо обратить внимание на то, что полученные соотношения между линейными и фазными напряжениями имеют место только при симметричной системе напряжений.

Так как векторы линейных напряжений определяются как разности векторов фазных напряжений, то, соединив концы векторов фазных напряжений, образующих звезду, получим треугольник векторов линейных напряжений (рис. 7-7).

Пример 7-1. Определить линейное напряжение генератора, если фазное напряжение его 127 и 220 В.

Если фазное напряжение 220 В, то