Главная · На заметку · Защитное отключение ск происходит по следующим причинам. Какие требования предъявляются к защитного отключения и какие функции оно выполняет? Принцип работы аппаратов защитного отключения

Защитное отключение ск происходит по следующим причинам. Какие требования предъявляются к защитного отключения и какие функции оно выполняет? Принцип работы аппаратов защитного отключения

Защитное отключение - вид защиты от поражения током в электроустановках, обеспечивающей автоматическое отключение всех фаз аварийного участка сети. Длительность отключения поврежденного участка сети должна быть не более 0,2 с.

Области применения защитного отключения: дополнение к защитному заземлению или занулению в электрифицированном инструменте; дополнение к занулению для отключения электрооборудования, удаленного от источника питания; мера защиты в передвижных электроустановках напряжением до 1000 В.

Сущность работы защитного отключения заключается в том, что повреждение электроустановки приводит к изменениям в сети. Например, при замыкании фазы на землю изменяется напряжение фаз относительно земли - значение фазного напряжения будет стремиться к величине линейного напряжения. При этом возникает напряжение между нейтралью источника и землей, так называемое напряжение нулевой последовательности. Снижается общее сопротивление сети относительно земли при изменении сопротивления изоляции в сторону его уменьшения и т. д.

Принцип построения схем защитного отключения заключается в том, что перечисленные режимные изменения в сети воспринимаются чувствительным элементом (датчиком) автоматического устройства как сигнальные входные величины. Датчик выполняет роль реле тока или реле напряжения. При определенном значении входной величины защитное отключение срабатывает и отключает электроустановку. Значение входной величины называют уставкой.

Структурная схема устройства защитного отключения (УЗО) представлена на рис.

Рис. Структурная схема устройства защитного отключения: Д - датчик; П - преобразователь; КПАС - канал передачи аварийного сигнала; ИО - исполнительный орган; МОП - источник опасности поражения

Датчик Д реагирует на изменение входной величины В, усиливает ее до значения KB (К - коэффициент передачи датчика) и посылает в преобразователь П.

Преобразователь служит для преобразования усиленной входной величины в аварийный сигнал КВА. Далее канал передачи аварийного сигнала КПАС передает сигнал АС с преобразователя на исполнительный орган (ИО). Исполнительный орган осуществляет защитную функцию по устранению опасности поражения - отключает электрическую сеть.

На схеме показаны участки возможных помех, влияющие на работу УЗО.

На рис. приведена принципиальная схема защитного отключения с помощью реле максимального тока.

Рис. Схема устройства защитного отключения: 1 - реле максимального тока; 2 - трансформатор тока; 3 - заземляющий провод; 4 - заземлитель; 5 - электродвигатель; 6 - контакты пускателя; 7 - блок-контакт; 8 - сердечник пускателя; 9 - рабочая катушка; 10 - кнопка опробования; 11 - вспомогательное сопротивление; 12 и 13 - кнопки останова и включения; 14 - пускатель

Катушка этого реле с нормально замкнутыми контактами подключается через трансформатор тока или непосредственно в рассечку проводника, идущего к отдельному вспомогательному или общему заземлителю.

Электродвигатель включается в работу нажатием кнопки «Пуск». При этом подается напряжение на катушку, сердечник пускателя втягивается, контакты замыкаются и включают электродвигатель в сеть. Одновременно замыкается блок-контакт, вследствие чего катушка остается под напряжением.

При замыкании на корпус одной из фаз образуется цепь тока: место повреждения - корпус - заземляющий провод - трансформатор тока - земля - емкость и сопротивление изоляции проводов неповрежденных фаз - источник питания - место повреждения. Если величина тока достигнет уставки срабатывания токового реле, реле сработает (т. е. его нормально замкнутый контакт разомкнётся) и разорвет цепь катушки магнитного пускателя. Сердечник этой катушки освободится, и пускатель отключится.

Для проверки исправности и надежности действия защитного отключения предусмотрена кнопка, при нажатии которой устройство срабатывает. Вспомогательное сопротивление ограничивает ток замыкания на корпус до необходимой величины. Предусмотрены кнопки для включения и отключения пускателя.

В систему предприятий общественного питания входит большой комплекс мобильных (инвентарных) зданий из металла или с металлическим каркасом для уличного торгово-сервисного обслуживания (закусочные, кафе и т. п.). В качестве технического средства защиты от электротравматизма и от возможного пожара в электроустановках предписано обязательное применение на этих объектах устройства защитного отключения в соответствии с требованиями ГОСТ Р50669-94 и ГОСТ Р50571.3-94.

Главгосэнергонадзор рекомендует использовать для этой цели электромеханическое устройство типа АСТРО-УЗО, принцип действия которого основан на воздействии возможных токов утечки на магнитоэлектрическую защелку, обмотка которой подключена во вторичную обмотку трансформатора тока утечки, с сердечником из специального материала. Сердечник в нормальном режиме работы электрической сети удерживает механизм расцепления во включенном состоянии. При возникновении какой-либо неисправности во вторичной обмотке трансформатора тока утечки наводится ЭДС, сердечник втягивается, происходит срабатывание магнитоэлектрической защелки, связанной с механизмом свободного расцепления контактов (отключается рубильник).

АСТРО-УЗО имеет российский сертификат соответствия. Устройство включено в Госреестр.

Устройством защитного отключения должны оснащаться не только указанные выше сооружения, но и все помещения с повышенной или особой опасностью поражения электрическим током, в том числе сауны, души, теплицы с электроподогревом и т. п.

Защитное отключение - это быстродействующая защи­та, обеспечивающая автоматическое отключение электро­установки при возникновении в ней опасности поражения человека электрическим током.

настоящее время защитное отключение является наиболее эффективным электрозащитным средством. Опыт развитых зарубежных стран показывает, что массовое применение устройств защитного отключения (УЗО) обес­печило резкое снижение электротравматизма.

Защитное отключение находит все более широкое при­менение в нашей стране. Оно рекомендовано к использо­ванию в качестве одного из средств по обеспечению электробезопасности нормативными документами (НТД): ГОСТ 12.1.019-79, ГОСТ Р 50571.3-94 ПУЭ и др. В ряде случаев требуется обязательное применение УЗО в элек­троустановках зданий (см. ГОСТ Р 5066.9-94). К объектам, подлежащим оснащению УЭО, относятся: вновь стро­ящиеся, реконструируемые, капитально ремонтируемые жилые дома, общественные здания, промышленные соору­жения независимо от форм собственности и принадлеж­ности. Не допускается применение УЗО в тех случаях, когда внезапное отключение может привести по техноло­гическим причинам к возникновению ситуаций, опасных для персонала, к отключению пожарной, охранной сигна­лизации и т.п.

Основными элементами УЗО являются прибор защитного отключения и исполнительное устройство - автоматиче­ский выключатель. Прибор защитного отключения - это совокупность отдельных элементов, которые восприни­мают входной сигнал, реагируют на его изменение и при заданном значении сигнала воздействую на выключатель. Исполнительное устройство - автоматический выключа­тель, обеспечивающий отключение соответствующего участка электроустановки (электрической сети) при по­лучении сигнала от прибора защитного отключения.

Основные требования, предъявляемые к УЗО:

1) Быстродействие - время отключения (),скла­дываемое из времени действия прибора (t п) и времени действия выключателя (t в) , должно отвечать условию

Существующие конструкции приборов и аппаратов, применяемых в схемах защитного отключения, обеспечи­вают время отключения t o ткл = 0,05 - 0,2 с.

2) Высокая чувствительность - способность реагиро­вать на малые значения входных сигналов. Высокочув­ствительные устройства УЗО позволяют задавать уставки выключателям (значения входных сигналов, при которых выключатели срабатывают), обеспечивающие безопасность прикосновения человека к фазе.

3) Селективность - избирательность действия УЗО, т.е. способность отключать от сети тот участок, в котором возникла опасность поражения человека током.

4) Самоконтроль - способность реагировать на соб­ственные неисправности путем отключения защищаемого объекта является желательным свойством для УЗО.


5) Надежность - отсутствие отказов в работе, а также ложных срабатываний. Надежность должна быть до­статочно высокой, так как отказы УЗО могут создавать ситуации, связанные с поражением персонала током.

Область применения УЗО практически не ограничена: они могут применяться в сетях любого напряжения и с любым режимом нейтрали. Наибольшее распространение УЗО получили в сетях до 1000 В, где они обеспечивают безопасность при замыкании фазы на корпус, снижении сопротивления изоляции сети относительно земли ниже определенного предела, прикосновении человека к токоведущей части, находящейся под напряжением, в пере­движных электрических установках, в электроинстру­менте и др. Причем УЗО могут применятся как самостоятельные защитные устройства, так и в качестве дополнительной меры к занулению или защитному зазем­лению. Эти свойства определяются типом применяемого УЗО и параметрами защищаемой электроустановки.

Типы устройств защитного отключения. Работа элек­трической сети как в нормальном, так и в аварийном режиме сопровождается наличием определенных пара­метров, которые могут изменяться в зависимости от условий и режима работы. Степень опасности поражения человека определенным образом зависит от этих пара­метров. Следовательно, их можно использовать в ка­честве входных сигналов для УЗО.

На практике для создания УЗО используются следую­щие входные сигналы:

Потенциал корпуса относительно земли;

Ток замыкания на землю;

Напряжение нулевой последовательности;

Дифферинциальный ток (ток нулевой последователь­ности) ;

Напряжение фазы относительно земли;

Оперативный ток.

Кроме того, применяются и комбинированные уст­ройства, реагирующие на несколько входных сигналов.

Ниже рассмотрена схема и работа устройства защит­ного отключения, реагирующего на потенциал корпуса относительно земли.

Назначение УЗО данного типа - устранение опасности поражения людей током при возникновении на заземлен­ном или зануленном корпусе повышенного потенциала. Обычно эти устройства являются дополнительной мерой защиты к заземлению или занулению. Устройство сраба­тывает, если возникший на корпусе поврежденного обо­рудования потенциал φ к окажется выше потенциала φ кдоп, которое выбирается, исходя из наибольшего длительно допустимого напряжения прикосновения U пр.доп.

Датчиком в этой схеме служит реле напряжения РН,

Рис.28. Принципиальная схема УЗО, реагирующего на

потенциал корпуса, соединенного с землей с помощью вспомогательного заземлителя R воп

При замыкании фазы на заземленный (или зануленный) корпус вначале действует защитное заземление, обеспечивающее понижение напряжения на корпусе до значения U к = I з * R з,

где R з - сопротивление защитного заземления.

Если это напряжение превысит напряжение уставки реле РН U уст, то реле за счет тока I р сработает, ра­зомкнув своими контактами цепь питания магнитного пускателя МП. А силовые контакты магнитного пускате­ля, в свою очередь, обесточат поврежденное оборудова­ние, т.е. УЗО выполнит свою задачу.

Оперативное (рабочее) включение и выключение оборудо­вания осуществляется кнопками ПУСК, СТОП. Контакты БК магнитного пускателя обеспечивают его питание после отпускания кнопки ПУСК.

Достоинством этого типа УЗО является простота его схемы. К недостаткам относятся необходимость вспомогательного заземления, отсутствие самоконтроля ис­правности, неселективность отключения в случае при­соединения нескольких корпусов к одному защитному за­землителю, непостоянство уставки при изменении R воп.

Далее рассмотрим вторую схему, реагирующую на диф­ференциальный ток (или ток нулевой последователь­ности) – УЗО(Д). Эти устройства наиболее универсальны, и поэтому находят широкое применение на произ­водстве, в общественных зданиях, в жилых домах и т.д.

Защитное отключение особенно актуально когда в доме используется большое количество различных электроприборов. В этой статье мы рассмотрим приборы защитного отключения, которые рекомендуются и используются при строительстве частных домов. Будет приведена схема устройство защитного отключения. Разберем вопрос что и когда использовать - УЗО или дифавтомат (дифференциальный автомат). Кроме того, выясним основные отличия автоматов защитного отключения.

Виды автоматов защитного отключения

Важной ступенью в организации электробезопасности являются защитные электрические аппараты или, как их чаще называют, автоматы. Условно, их можно разделить на три вида:

  • автоматические выключатели (АВ);
  • устройства дифференциального отключения (УЗО);
  • дифференциальные автоматические выключатели (ДАВ).

Рис 1. Автоматический выключатель


Рис 2. Устройство защитного отключения (УЗО)


Рис 3. Дифференциальный автоматический выключатель (ДАВ)

Принцип работы аппаратов защитного отключения

Автоматические выключатели (АВ) , см. рис.1, устанавливаем для защиты электропроводки от перегрузок по току, а электропотребителей от коротких замыканий. Перегрузки по току приводят к нагреву проводника, что ведет к возгоранию проводки и выходу ее из строя.

Устройство защитного отключения (УЗО) принцип работы (рис.2). Устанавливаем для защиты от поражения электрическим током, в случае пробоя изоляции аппаратуры и проводки. УЗО защитит нас и в случае прикосновения к открытым неизолированным участкам проводки или аппаратуры, находящихся под напряжением 220 В и не даст возникнуть пожару, если проводка неисправна.

Если появляется разность токов, то УЗО отключает подачу напряжения. Выбирать УЗО необходимо по двум параметрам: чувствительности и номинальному току. Обычно для домашних целей выбирают УЗО с чувствительностью 300 мА. Номинальный ток выбирается в зависимости от суммарной мощности электропотребителей и должен быть равен или быть на порядок ниже номинального тока вводного автоматического выключателя (АВ), потому что УЗО не защищает от короткого замыкания и перегрузок по току. Устройство защитного отключения УЗО устанавливают обычно в схеме после счетчика для защиты всей проводки в доме, см. рис. 4, 5. По современным нормам, установка УЗО является обязательной.


Рис. 4. Схема подключения УЗО


Рис. 5 Схема монтажная электроснабжения дома с использованием УЗО

1 - щиток распределительный; 2 - нейтраль; 3 - ш ина заземления; 4 - ф аза; 5 - УЗО; 6 - ав томатический выключатель; 7 - п итание потребителей.

Дифференциальные автоматические выключатели (ДАВ) объединяют в себе функции УЗО и АВ. Схема дифференциального автомата основана на защите цепей от коротких замыканий и перегрузок, а также защита людей от поражения электрическим током при касании к токоведущим частям, см. рис. 6.


Рис. 6. Схема работы ДАВ

Эти устройства получили широкое распространение в бытовых электрических сетях (220/380 В), в розеточных сетях. Дифференциальный автоматический выключатель состоит из быстродействующего автоматического выключателя и устройства защитного отключения, который реагирует на разность токов в прямом и обратном направлениях.

Принцип работы дифференциального автомата. Если изоляция электропроводки не повреждена и отсутствует касание человека к токоведущим частям, значит в сети отсутствует ток утечки. Значит токи в прямом и обратном (фаза-ноль) проводниках нагрузки равны. Эти токи наводят в магнитном сердечнике трансформатора тока ДАВ равные, но встречно направленные магнитные потоки. В результате чего ток во вторичной обмотке равен нулю и не вызывает срабатывание чувствительного элемента - магнитоэлектрической защелки.

При возникновении утечки, например: при прикосновении человека к фазному проводнику, баланс токов и магнитных потоков нарушается, во вторичной обмотке появляется ток небаланса, который вызывает срабатывание магнитоэлектрической защелки, воздействующей в свою очередь на механизм расцепителя автомата с контактной системой.

Для осуществления периодического контроля работоспособности УЗО и ДАВ предусмотрена цепь тестирования. При нажатии кнопки "Тест" искусственно создается отключающий дифференциальный ток. Срабатывание аппаратов защиты означает, что оно в целом исправно.

Выбор защитного автомата

Теперь, определимся в каком случае и какому защитному автомату нам отдать предпочтение:

  • Для защиты проводки осветительной сети, от которой питаются все наши светильники, выбираем автоматические выключатели (АВ) с токами срабатывания 16 А.
  • Розеточную сеть в доме, которая используется для включения утюгов, настольных ламп, телевизора, компьютера и т.д., должны защищать автоматические выключатели с дифференциальной защитой (ДАВ).
  • Для розеточной сети мы выбираем ДАВ с током срабатывания 25 А и дифференциальным током отключения 30 мА.
  • Для подключения в доме кондиционера, посудомоечной машины, электропечи, СВЧ-печи и других, так необходимых нам в быту мощных приборов, требуется своя индивидуальная розетка и следовательно свой автоматический выключатель с дифференциальной защитой. Например, для подключения электропечи мощьностью 6кВт необходим дифференциальный автоматический выключатель с токами отключения 32 и 30 мА.

Обращаю внимание, что розетки все должны быть с заземляющим контактом. Силовое оборудование, например точильный станок, советую подключать к автоматическому выключателю. Так как вся сеть у нас в доме на напряжение 220 В, то и перечисленные автоматические выключатели выбираем на соответствующее напряжение.

Поговорим об автоматическом выключателе, который в целях безопасности требуется поставить на вводе. Если мы все розеточные линии защитили автоматическими выключателями с дифференциальной защитой, то на вводе мы ставим автоматический выключатель (АВ) с номинальным током определенным техническими условиями и однолинейной схемой проекта «Электрооборудование жилого дома».

Но можно после вводного автоматического выключателя (АВ) поставить устройство защитного отключения (УЗО) с током дифференциальной защиты 300 мА. Такую схему включения смотрите на рис.5. Если мы выбираем такой вариант защиты, то он не обязывает нас устанавливать дифференциальные автоматические выключатели для розеточной сети, а просто установим автоматический выключатель (АВ), смотрите тот же рис. 5. Такая схема приемлема если у нас всего одна розеточная линия с рядом розеток. Но она совершенно не рациональна, если у нас ряд самостоятельных приемников, включенных в индивидуальные розетки.

Например: У вас имеется токовая утечка на корпус стиральной машины и вы случайно прикасаетесь к ней. Мгновенно сработает дифференциальная защита и ДАВ стиральной машины отключится. Вам не трудно будет определить и устранить причину. А представьте, сколько необходимо поработать, чтобы найти причину отключения УЗО на вводе.

Хочу сказать, что на современном рынке автоматических выключателей и УЗО очень большой выбор аппаратов, как отечественного производства, так и зарубежного. Надо учесть, что продукция отечественного производства отличается большими габаритными размерами, возможностью регулирования по току, меньшей ценой, а срок службы в бытовых условиях практически одинаков.

Таблица 1. Сравнение стоимости автоматических выключателей

Заключение

Итак, в статье мы с Вами рассмотрели вопросы электробезопасности. Особенно актуальны они стали, когда в наш дом вошло огромное количество электроприборов, бытовой электроники и компьютеров. Проводка несет очень высокую нагрузку и защитное отключение необходимо. Современная техника очень дорогая и требовательная к качеству сетей. Поэтому не стоит экономить на мерах защиты, потому что стоимость УЗО не соизмерима со стоимостью оборудования в вашем доме, и тем более с ценой человеческой жизни.

Внимание: Цены актуальны на 2009 год.

Защитное автоматическое отключение питания от сети (далее – питания) осуществляется посредством автоматического размыкания цепи одного или нескольких фазных проводников (и, если необходимо, то и нулевого рабочего проводника), выполняемого в целях защиты от поражения электрическим током. Этот способ защиты реализуется, например, в рассмотренной системе защитного заземления, а также в системе зануления и в устройствах защитного отключения. Характеристики защитных аппаратов автоматического отключения и параметры проводников должны быть согласованы, чтобы обеспечивалось нормированное время отключения поврежденной цепи защитно-коммутационным аппаратом, указанное в ПУЭ, в соответствии с номинальным напряжением питающей сети. Защитно-коммутационные аппараты могут реагировать на токи короткого замыкания (например, в системе зануления) или на дифференциальный ток (устройства защитного отключения). В электроустановках, где применено автоматическое отключение питания, выполняют уравнивание потенциалов в целях снижения напряжения прикосновения в период времени от момента возникновения аварийной ситуации до момента отключения питания.

Зануление применяется в электроустановках напряжением до 1 кВ и представляет собой преднамеренное соединение открытых проводящих частей электроустановок (в том числе их корпусов) с глухозаземленной нейтралью генератора или трансформатора.

Это соединение выполняют посредством нулевого защитного проводника (РЕ-проводника). Согласно указаниям главы 1.7. ПУЭ, такую систему обозначают TN (Т – «terra» (англ.) – нейтраль источника глухо заземлена, N – «neutral» – открытые проводящие части присоединены к этой нейтрали). Нулевой РЕ-проводник («protection earth») следует отличать от нулевого рабочего проводника (N), который тоже присоединен к глухозаземленной нейтрали источника, но предназначен для питания однофазных электроприемников. Проводники РЕ и N могут быть разделены на всем своем протяжении, образуя совместно с фазными пятипроводную систему, обозначаемую TN-S (S – «separated» – «разделенный»). Если же они совмещены в одном PEN-проводнике на всем протяжении, то это – четырехпроводная система TN-C (C – «combination» – «совмещенный»). Применяется также промежуточная система TN-C-S, в которой, начиная от источника питания, прокладывается PEN-проводник, а затем он разделяется на отдельные N и РЕ-проводники в зоне размещения электроприемников, предназначенных для подключения к системе TN-S. С позиций безопасности система TN-S предпочтительнее системы TN-C, поскольку в нормальном режиме рабочий ток не протекает по РЕ-проводнику. Поэтому потенциалы зануленных открытых проводящих частей электроустановок практически одинаковы и равны потенциалу земли. Система TN-S, впервые предложенная с 70-х годах XX века, начиная с 1995 года широко внедряется в отечественной промышленности и в быту, однако область применения системы TN-C (используемой с 1910 года) все еще превалирует.



Монтаж и эксплуатация трехфазных сетей невозможны без четкой (на дистанции) идентификации фазных и нулевых проводников. Это возможно с помощью цветовой маркировки. Шины фазы A (на схемах обозначается L1), B (L2), и C (L2) окрашиваются соответственно в желтый, зеленый и красный цвета. Обозначения A, B, C – прямая последовательность букв латинского алфавита; прямая последовательность букв русского алфавита, соответственно – Ж, З, К (буква И пропущена). Рабочий нулевой проводник (N) окрашивается в голубой цвет, защитный (PE) – в желто-зеленый цвет (поскольку проводник обозначается двумя буквами, то и цвета два). Совмещенный PEN-проводник окрашивается в голубой цвет с нанесенными через одинаковые промежутки поперечными (наклонными) чередующимися полосами желтого и зеленого цветов. Если используется сеть постоянного тока, то шина «+» окрашивается в красный цвет, «–» – в синий , нулевой (нейтральный) проводник – в голубой . В электроустановках ближайшая к человеку шина (например, при открытии дверцы силовой сборки или при подъеме на опору ВЛ) всегда должна быть шина PE. Далее следует шина N, а далее – фазные, причем непосредственно после шины N следует шина фазы C (красный цвет – цвет опасности), затем – B и, наконец, самой удаленной шиной является шина фазы A. В сетях постоянного тока ближайшей к человеку шиной должна быть нейтральная, далее следует шина «+» (красный цвет), а далее – шина «–».



Ознакомившись с цветовой маркировкой проводников, рассмотрим принцип действия зануления в трехфазной сети на примере системы TN-C (рисунок 5.26).

Рисунок 5.26 – Схема защитного зануления (система TN-C)

Зануление превращает пробой фазы на корпус в короткое замыкание (КЗ) между фазными и нулевым защитным проводниками и способствует протеканию тока I к (рисунок 5.26) большой величины. Эта величина тока обеспечивает срабатывание аппарата защиты (A3), автоматически отключающего поврежденную установку от сети. Такой защитой могут быть плавкие предохранители или автоматические выключатели. Ток короткого замыкания должен быть такой величины, чтобы вызвать перегорание плавкой вставки предохранителя или срабатывание автоматического выключателя за время, не превышающее допустимое.

Согласно ПУЭ наибольшее допустимое время защитного автоматического отключения в системе TN равно 0,8; 0,4; 0,2 и 0,1 с в зависимости от номинального фазного напряжения сети: 127, 220, 380 и более 380 В, соответственно. Регламентированы также наименьшие площади поперечного сечения нулевых защитных проводников. Если защитные проводники изготовлены из того же материала, что и фазные проводники, то их наименьшее сечение зависит от сечения фазных проводников следующим образом:

Если сечение фазных проводников меньше или равно 16 мм 2 , то наименьшее сечение защитных проводников равно сечению фазных;

Если сечение фазных проводников больше 16 мм 2 , но меньше 35 мм 2 , то сечение защитных проводников должно быть не менее 16 мм 2 ;

Если сечение фазных проводников более 35 мм 2 , то сечение защитных проводников равно половине сечения фазных при условии соблюдения времени срабатывания защиты (0,4 с при фазном напряжении 220 В).

Сечения нулевых защитных проводников из других материалов должны быть эквивалентны по проводимости приведенным.

Нулевой защитный проводник не должен содержать предохранителей и других разъединяющих устройств. Допустимо применение выключателей, которые отключают одновременно нулевой и фазные провода.

Ток однофазного короткого замыкания I к протекает по петле «фаза–нуль» (рисунок 5.26). Она состоит из фазного проводника (участка от силового трансформатора до поврежденного участка), металлического корпуса электроустановки, соединенного с проводником PEN, самого проводника PEN (участка от корпуса электроустановки до нулевой точки силового трансформатора), а также фазной обмотки силового трансформатора (в данном случае – обмотки фазы А). Если сопротивление петли «фаза–нуль» будет большим, время срабатывания защиты превысит наибольшее допустимое время защитного автоматического отключения. Поэтому сопротивление данной петли измеряют не реже одного раза в три года с помощью приборов М417, ЭСО202 и подобных им. При недопустимой величине сопротивления проводят ревизию соединений металлических корпусов электроустановок с нулевым проводником (проверяют затяжку болтовых и целостность сварных контактных соединений, удаляют окалину, зачищают контакты от ржавчины). После ревизии проверяют переходное сопротивление контактов – оно должно быть не более 0,05 Ом.

Нулевой защитный проводник соединен с землей посредством заземления нейтрали и повторных заземлителей, сопротивление растеканию тока которых обозначено соответственно r 0 и r п (рисунок 5.26). Повторное заземление выполняют на концах воздушных линий (или ответвлений от них длиной более 200 м), а также на трехфазных (однофазных) вводах в здания, где имеются электроустановки, подлежащие занулению. Сопротивление заземления нейтрали, общее сопротивление повторных заземлителей и каждого из них в отдельности не должны превышать установленных наименьших значений, например, в сети 380/220 В соответственно 4, 10 и 30 Ом (таблица 5.8). Зануленные части электроустановок оказываются заземленными через нулевой защитный проводник. Поэтому в аварийный период (до автоматического отключения поврежденной установки от сети) проявляется защитное действие этого заземления, т. е. снижается напряжение зануленных частей относительно земли. Причем это особенно существенно в случае обрыва PEN-проводника и замыканий фазы на корпус за местом обрыва. Кроме того, за счет заземления нейтрали источника, даже при отсутствии повторного заземления, значительно снижается потенциал на корпусах электрооборудования с поврежденной изоляцией. На воздушных линиях повторное заземление нулевого провода используется также в целях молниезащиты. В качестве нулевых защитных проводников можно использовать стальные полосы, металлические оплетки кабелей, металлоконструкции зданий, подкрановые пути и др.

В тех случаях, когда электробезопасность не может быть обеспечена в системе TN с помощью защитного зануления, в сети до 1 кВ с глухозаземленной нейтралью допускается заземление открытых проводящих частей при помощи заземлителя, электрически независимого от глухозаземленной нейтрали источника (система ТТ). При этом для защиты при косвенном прикосновении предусматривается автоматическое отключение питания с обязательным применением УЗО и соблюдением условия:

где I з – ток срабатывания защитного устройства; R з – суммарное сопротивление заземлителя и заземляющего проводника наиболее удаленного от УЗО электроприемника. Кроме того, выполняется система уравнивания потенциалов.

Защитное отключение – это система быстродействующей защиты, автоматически (за 0,2 с и менее) отключающая электроустановку при возникновении в ней опасности поражения человека электрическим током. Защитное отключение применяется в тех случаях, когда невозможно или трудно осуществить защитное заземление или зануление, либо когда высока вероятность прикосновения людей к неизолированным токоведущим частям электроустановок. Поэтому защитное отключение целесообразно применять для обеспечения защиты при использовании ручного электроинструмента, передвижных электроустановок, а также в быту.

При замыкании фазы на корпус, при снижении сопротивления изоляции фаз относительно земли ниже определенного предела, при прикосновении человека к токоведущей части, находящейся под напряжением, происходит изменение электрических параметров сети, которое может служить импульсом для срабатывания устройства защитного отключения (УЗО), основными частями которого являются прибор защитного отключения и автоматический выключатель.

Прибор защитного отключения реагирует на изменение параметров электрической сети и подает сигнал на срабатывание автоматического выключателя, который отключает защищаемую электроустановку от сети.

Устройства защитного отключения предназначены не только для защиты человека от поражения электрическим током при прикосновении к открытой проводке или к электрооборудованию, оказавшемуся под напряжением, но и для предотвращения возгорания, возникающего вследствие длительного протекания токов утечки и развивающихся из них токов короткого замыкания.

Таким образом, основное назначение У3О: защита от токов утечки; защита от токов повреждения на землю; защита от возгорания.

В зависимости от входного сигнала известны УЗО, реагирующие на напряжение корпуса относительно земли, на ток замыкания на землю, на напряжение нулевой последовательности, на дифференциальный ток, на оперативный ток и т.п.

Устройство защитного отключения, реагирующее на напряжение корпуса относительно земли (рисунок 5.27), устраняет опасность поражения током при возникновении на заземленном или зануленном корпусе повышенного напряжения, например, в случае повреждения изоляции.

Рисунок 5.27 – Принципиальная схема УЗО, реагирующего на напряжение корпуса относительно земли

Принцип действия – быстрое отключение от сети установки, если напряжение на корпусе относительно земли окажется выше заданного значения, при котором прикосновение к корпусу становится опасным. Такое УЗО реагирует не только на полный пробой изоляции, но и на частичное уменьшение ее сопротивления.

Устройство защитного отключения, работающее на постоянном оперативном токе, предназначено для непрерывного автоматического контроля изоляции фаз относительно земли, а также для защиты человека, прикоснувшегося к токоведущим проводам (рисунок 5.28). В этих устройствах активное сопротивление изоляции трехфазных проводов r относительно земли оценивается получаемым от постороннего источника оперативным током I оп, проходящим через эти сопротивления. При снижении r ниже установленного предела в результате повреждения изоляции и замыкания провода на землю через малое сопротивление r зм или прикосновения человека к фазному проводу возрастает ток I оп, вызывающий отключение защищаемой сети от источника питания.

Устройство защитного отключения, реагирующее на дифференциальный ток, обеспечивает защиту в случае прикосновения человека к заземленному или зануленному корпусу электроустановки при замыкании на него фазы, а также при контакте человека с токоведущей частью, находящейся под напряжением. УЗО этого типа нашли широкое применение в агропромышленном комплексе и в быту.

Рисунок 5.28 – Принципиальная схема УЗО, работающего на постоянном оперативном токе (исходное состояние)

Принципиальная схема такого устройства защитного отключения приведена на рисунке 5.29. Датчиком служит трансформатор тока (ТТ) (рисунок 5.30).

Рисунок 5.29 – Принципиальная схема УЗО, реагирующего на дифференциальный ток (исходное состояние)

Рисунок 5.30 – Кольцеобразный магнитопровод с вторичной обмоткой трансформатора

Если токи в фазных проводах I 1 , I 2 , I 3 равны и сдвинуты по фазе на 120° относительно друг друга, то создаваемый ими суммарный магнитный поток в магнитопроводе ТТ равен нулю. Когда возникает асимметрия проводимостей фаз относительно земли, например, в результате замыкания фазы на землю или прикосновения человека к фазе в зоне защиты, то равенство токов в фазах нарушается. Появляется дифференциальный ток, равный векторной сумме этих токов, который в соответствии с коэффициентом трансформации передается во вторичную обмотку трансформатора на вход обмотки реле тока (РТ). Если этот ток достигнет (или превысит) значения тока срабатывания реле, то его нормально замкнутые контакты разомкнутся, отсоединив электроприемник от питающей сети. Реле отключится, даже если оператор удерживает рукоятку управления во взведенном положении. При необходимости усиления сигнала с ТТ между ним и реле РТ помещают усилитель тока (на рисунке 5.29 не показан).

Этот тип устройства защитного отключения может применяться как в сети с изолированной, так и в сети с заземленной нейтралью. Однако данное отключающее устройство наиболее эффективно в сети с заземленной нейтралью, в которой ТТ может надеваться также на проводник, заземляющий нейтральную точку силового трансформатора, в результате чего будет защищена вся питающаяся от него сеть.

При защите однофазного электроприемника сквозь кольцеобразный магнитопровод пропускают фазный и нулевой рабочий проводники, с помощью которых он присоединяется к питающей сети. В нормальном режиме работы токи в этих проводниках равны и противоположно направлены, поэтому их суммарный магнитный поток в магнитопроводе равен нулю. В случае появления утечки на землю равенство токов нарушается и появляется дифференциальный ток. Последующая работа УЗО до отключения электроприемника от сети аналогична описанному выше устройству применительно к трехфазным объектам защиты.

Устройства защитного отключения могут служить дополнительной защитой к заземлению и занулению, а также самостоятельной защитой (взамен их) и не зависят от сопротивления заземления и сопротивления нулевого проводника при занулении. Недостатком УЗО этого типа является нечувствительность к симметричному снижению сопротивления изоляции фаз в защищаемом электрооборудовании, что возникает весьма редко.

Известна следующая классификация устройств защитного отключения, срабатывающих от дифференциального тока: АС – реагирующие на переменный синусоидальный ток; А – реагирующие на переменный, а также пульсирующий постоянный ток; В – реагирующие на переменный, постоянный и выпрямленный токи; S – селективные (с выдержкой времени отключения); О – то же, что и типа S, но с меньшей выдержкой времени отключения.

Наличие УЗО типа А и В вызвано тем, что дифференциальные токи утечки могут становиться пульсирующими или принимать вид сглаженного постоянного тока в связи с применением электронных устройств, например, выпрямителей или частотных преобразователей. Устройства защитного отключения типа S и G предназначены для обеспечения селективности отключения объектов защиты. Так, при многоступенчатой схеме защиты УЗО, расположенное ближе к источнику питания, должно иметь время срабатывания не менее чем в три раза больше, чем время срабатывания УЗО, размещенного ближе к потребителю.

Устройства защитного отключения выпускаются с номинальными отключающими токами утечки 10, 30, 100, 300, 500, 1000 мА. Причем УЗО с уставками 100 мА и более применяются обычно для обеспечения селективности защиты, а с уставкой 300 мА также для защиты от возникновения пожара при замыкании на землю.

Устройства защитного отключения бывают электромеханическими и электронными. Первые не зависят от напряжения питания, так как энергии входного сигнала (дифференциального тока) достаточно для их работы. Вторые зависят, так как питаются от контролируемой сети или от внешнего источника (маломощный сигнал от дифференциального трансформатора поступает на электронный усилитель, который подает на механизм расцепителя главных контактов УЗО мощный импульс – десятки и даже сотни ватт, достаточный для срабатывания простого расцепителя). С этой точки зрения электронные УЗО менее надежны, нежели электромеханические. Кроме того, при обрыве нулевого провода до места установки электронного УЗО оно, не имея питания, не сработает, и фазный провод в защищаемом объекте будет представлять опасность поражения током. Для устранения этого недостатка электронные УЗО оснащают электромагнитным реле, работающим в режиме удержания, которое защищает отключаемый объект при исчезновении питания аппарата защиты. Ряд отечественных предприятий выпускают электронные устройства защитного отключения, в то время как в Германии, Франции, Австрии и некоторых других европейских странах допускается применять только УЗО, не зависящие от напряжения питания. Электромеханические УЗО производят ведущие западные фирмы – Siemens, ABB, GF POWER, Legrand, Merlin Gerin и др. Известны отечественные электромеханические аппараты – АСТРО-УЗО, ДЭК, ИЭК.

Известны также комбинированные УЗО, оснащенные дополнительно встроенной защитой от токов коротких замыканий и перегрузок – так называемые дифференциальные автоматические выключатели.

При выборе УЗО необходимо руководствоваться условием, что суммарный ток утечки стационарных и переносных электроприемников не должен превышать 1/3 номинального тока отключения УЗО. При отсутствии данных ток утечки электроприемников следует принимать из расчета 0,4 мА на каждый ампер тока нагрузки, а ток утечки сети – из расчета 10 мкА на 1 м длины фазного проводника. Исходя из последнего условия, в старых домах и производственных корпусах с изношенной проводкой устанавливают УЗО с номинальным током отключения 30, а не 10 мА. В новых домах, во вновь сооруженных производственных помещениях, а также в сантехнических помещениях с высокой влажностью для защиты человека и животных от поражения током применяют УЗО с номинальным током отключения 10 мА (ток утечки сети не будет вызывать ложных срабатываний).

Устройство защитного отключения подключается последовательно с автоматическим выключателем, при этом номинальный ток выключателя рекомендуется выбирать на ступень ниже номинального тока УЗО. При подключении рекомендуется применять специальные кабельные наконечники для предотвращения перегрева в месте контакта.

Для нормального функционирования УЗО необходимо ежемесячно проверять его работоспособность путем нажатия на кнопку «Тест». Отключение УЗО свидетельствует о том, что устройство исправно. В животноводческих комплексах и производственных помещениях проверка работоспособности осуществляется не реже одного раза в квартал.

УЗО не применяется, если защищаемая сеть питает автоматические системы пожаротушения, вентиляции, аварийного освещения, а также потребителей первой группы надежности электроснабжения .

Электроприемники первой группы (категории) – электроприемники, перерыв электроснабжения которых может повлечь за собой опасность для жизни людей, угрозу для безопасности государства, значительный материальный ущерб, расстройство сложного технологического процесса, нарушение функционирования особо важных элементов коммунального хозяйства, объектов связи и телевидения. Данные электроприемники обеспечиваются электроэнергией от двух независимых взаимно резервирующих источников питания (вторым может быть местная дизель-электростанция), а перерыв в электроснабжении может быть допущен только на время автоматического восстановления питания. В агропромышленном производстве электроприемниками первой категории являются птицеводческие фабрики.

УЗО допускается применять для защиты электроприемников второй и третьей категорий надежности электроснабжения. Электроприемники второй категории – электроприемники, перерыв электроснабжения которых приводит к массовому недоотпуску продукции, массовым простоям рабочих, механизмов и промышленного транспорта, нарушению нормальной деятельности значительного количества городских и сельских жителей. Электроприемники второй категории обеспечиваются электроэнергией от двух независимых взаимно резервирующих источников питания. При нарушении электроснабжения от одного из источников питания допустимы перерывы электроснабжения на время, необходимое для включения резервного питания действиями дежурного персонала или выездной оперативной бригады. В сельскохозяйственном производстве электроприемниками второй категории являются животноводческие комплексы и теплицы.

Для электроприемников третьей категории электроснабжение может выполняться от одного источника питания при условии, что перерывы электроснабжения, необходимые для ремонта, не превышают 1 суток. Питание электроприемники получают от единственного источника. Все жилые дома, гаражи, ремонтные мастерские и т.д. относятся к электроприемникам третьей категории надежности электроснабжения.

При выборе дифференциальных автоматических выключателей (автоматов) необходимо помнить, что их основными назначениями являются: защита от токов перегрузки; защита от токов короткого замыкания; защита от токов утечки; защита от перенапряжения; защита от возгорания.

Дифференциальные автоматические выключатели могут применяться в широком диапазоне температур окружающего воздуха, позволяют подсоединять как медные, так и алюминиевые проводники, не требуют обслуживания при эксплуатации. Дифференциальные выключатели соответствуют современным требованиям пожарной безопасности, их корпусные детали выполнены из материалов, выдерживающих испытание на огнестойкость при температуре до 960 °С. Дифференциальные автоматы выпускаются в двух и четырехполюсном исполнении. Монтаж устройства производится на 35 мм DIN-рейку.

Так же, как и у УЗО, работоспособность проверяется нажатием кнопки «Тест» – при ее нажатии устройство мгновенно отключается. Чтобы включить после этой проверки устройство, необходимо нажать кнопку «Возврат» и взвести рукоятку выключателя.

Защитное отключение

Зануление

Зануление - преднамеренное электрическое соединœение с нулевым защитным проводником металлических нетоковедущих частей, которые могут оказаться под напряжением. Нулевой защитный проводник - проводник, соединяющий зануляемые части с нейтральной точкой обмотки источника тока или ее эквивалентом.

Зануление применяется в сетях напряжением до 1000 В с заземленной нейтралью. В случае пробоя фазы на металлический корпус электрооборудования возникает однофазное короткое замыкание, что приводит к быстрому срабатыванию защиты и тем самым автоматическому отключению поврежденной установки от питающей сети. Такой защитой являются: плавкие предохранители или максимальные автоматы, установленные для защиты от токов коротких замыканий; автоматы с комбинированными расцепителями.

При замыкании фазы на зануленный корпус электроустановка автоматически отключается, в случае если ток однофазного короткого замыкания I З удовлетворяет условию I З >= к ∙I Н, где I Н - номинальный ток плавкой вставки предохранителя или ток срабатывания автоматического выключателя, А; к - коэффициент кратности тока.

Для автоматов к = 1,25 - 1,4. Для предохранителœей к = 3.

Проводимость нулевого защитного проводника должна быть не менее 50 % проводимости фазного провода.

Расчет зануления на безопасность прикосновения к корпусу при замыкании фазы на землю или корпус сводится к расчету заземления нейтральной точки трансформатора и повторных заземлителœей нулевого защитного проводника. Согласно ПУЭ сопротивление заземления нейтрали должно быть не более 8 Ом при 220/127 В; 4 ОМ при 380/220 В; 2 Ом при 660/380 В.

Защитное отключение - это система защиты, автоматически отключающая электроустановку при возникновении опасности поражения человека электрическим током (при замыкании на землю, снижении сопротивления изоляции, неисправности заземления или зануления). Защитное отключение применяется тогда, когда трудно выполнить заземление или зануление, а также в дополнение к нему в некоторых случаях.

Учитывая зависимость оттого, что является входной величиной, на изменение которой реагирует защитное отключение, выделяют схемы защитного отключения: на напряжение корпуса относительно земли; на ток замыкания на землю; на напряжение или ток нулевой последовательности; на напряжение фазы относительно земли; на постоянный и переменный оперативные токи; комбинированные.

Принцип действия УЗО как защитного выключателя, реагирующего на ток утечки.

Рис. 14. Схема электроустановки с УЗО

Устройства, реагирующие на напряжение нулевой последовательности, применяются в трехпроводных сетях напряжением до 1000 В с изолированной нейтралью и малой протяженностью. Устройства защитного отключения, реагирующие на ток замыкания, применяются для установок, корпуса которых изолированы от земли (ручной электроинструмент, передвижные установки и т.д.).

Устройство, реагирующее на ток нулевой последовательности, применяется в сетях с заземленной и изолированной нейтралью.

Защитное отключение - понятие и виды. Классификация и особенности категории "Защитное отключение" 2017, 2018.

  • - ЗАЩИТНОЕ ОТКЛЮЧЕНИЕ

    Защитное отключение - быстродействующая защита, обеспечиваю­щая автоматическое отключение электроустановки при возникновении в ней опасности поражения током, которая может возникнуть при: замыкании фалы на корпус электрооборудования: снижении сопротивле­ния... .


  • - Защитное отключение

    Защитное отключение – это система защиты, автоматически отключающая электроустановку при возникновении опасности поражения человека электрическим током (при замыкании на землю, снижении сопротивления изоляции, неисправности заземления или зануления). Защитное... .


  • - Защитное отключение

    Защитное заземление Под защитным заземлением понимается преднамеренное соединение с землей или ее эквивалентом металлических нетоковедущих частей, которые могут оказаться под напряжением. Заземление частей электроустановки и корпусов... .


  • - Защитное отключение

    Защитное отключение – быстродействующая защита, обеспечивающая автоматическое отключение электроустановки при возникновении в ней опасности поражения током, которая может возникнуть: - при замыкании фазы на корпус электрооборудования; - при снижении... .


  • - ЗАЩИТНОЕ ОТКЛЮЧЕНИЕ

    РАЗДЕЛ 6.12 Защитное отключение (ЗО) – система защиты, автоматически отключающая электроустановку при возникновении опасности поражения человека электрическим током (при замыкании на землю, снижение сопротивления изоляции, неисправности заземления) ЗО применяются... .


  • - Защитное отключение

    Защитное отключение - система защиты, обеспечивающая автоматическое отключение электроустановки при возникновении в ней опасности поражения электрическим током. Схема защитного отключения приведена на рис. 2.13.3. Эта схема осуществляет защиту от глухих замыканий на... [читать подробнее] .


  • - Защитное отключение: назначение, область применения, сущность защиты, требования.

    Защитное отключение представляет собой быстро­действующую защиту, обеспечивающую автоматическое отключение электроустановки при возникновении в ней опасности поражения током. Такая опасность может воз­никнуть при нарушении изоляции токоведущих частей и пробое на... .