Главная · Бытовая техника · Способы получения воды из воздуха. Новое устройство для сбора воды из воздуха: дешево и эффективно. Преимущества атмосферной воды

Способы получения воды из воздуха. Новое устройство для сбора воды из воздуха: дешево и эффективно. Преимущества атмосферной воды

Имя изобретателя: Ладыгин А.В.
Имя патентообладателя: Общество с ограниченной ответственностью "Адекватные технологии"
Адрес для переписки: 119435, Москва, Новодевичий пр-д, д.2, кв.70, Ладыгину А.В.
Дата начала действия патента: 1999.08.05

Изобретение относится к способам автономного получения пресной воды питьевого качества из влаги окружающего атмосферного воздуха и может быть использовано в быту и для потребностей народного хозяйства. Техническим результатом изобретения является получение пресной воды при отсутствии или недоступности ее традиционных источников. Способ заключается в том, что формируют поток воздуха, содержащий пары воды, осуществляют искусственное охлаждение потока воздуха и конденсируют пары воды. Получаемые при этом пресную воду-конденсат подают в емкость для сбора воды, а охлажденный воздух - на конденсатор для обеспечения рабочего режима холодильного устройства. Сформированный поток воздуха пропускают через фильтр воздухозаборника в условиях окружающей среды с относительной влажностью от 70 до 100% и температурой от +15 до +50 o С, а затем через электростатическое поле. Получаемый охлажденный воздух через соединительную юбку подают на радиатор конденсатора, при этом объем проходящего через радиатор воздуха из условия 20 г влаги на 1 м 3 воздуха и среднесуточной производительности установки до 250 л/сутки лежит в пределах 12-13 тыс. м 3 в сутки.

ОПИСАНИЕ ИЗОБРЕТЕНИЯ

Изобретение относится к способам автономного получения пресной воды питьевого качества из влаги окружающего атмосферного воздуха и может быть использовано в быту для удовлетворения потребностей населения в очищенной питьевой воде, а также для потребностей народного хозяйства при ее промышленном использовании.

В настоящее время весьма актуальной является задача получения пресной воды при отсутствии или недоступности традиционных источников.

Одним из возможных методов решения проблемы является конденсация воды, содержащейся в атмосферном воздухе.

Так, известен способ и аппарат для удаления воды из воздуха, в котором воду удаляют из воздуха путем повторения четырехстадийного цикла. На первой стадии охлаждают конденсатор аккумуляции тепла холодным воздухом, поступаемым извне, и увлажняют реагент, увеличивающий гигроскопичность. На второй стадии удаляют воду из указанного реагента струей воздуха, нагретого солнечным излучением, и подводят его к конденсатору аккумуляции тепла. На третьей стадии охлаждают дополнительный конденсатор аккумуляции тепла воздухом, поступающим извне, и увлажняют реагент, увеличивающий гигроскопичность. На четвертой стадии удаляют воду из указанного реагента воздухом, нагретым солнечной энергией /патент Франции N 2464337, кл. E 03 B 3/28, 1981/.

Не умаляя достоинства данного способа и устройства для его осуществления, тем не менее необходимо отметить его более сложное исполнение.

Известен способ и устройство для извлечения воды из атмосферного воздуха, одним их которых является воздушно-водяной генератор по патенту США N 5203989 по кл. E 03 B 3/28, 1987.

Согласно данному патенту формируют поток воздуха, содержащего водяные пары, охлаждают его до температуры ниже точки росы, конденсируют водные пары в воду, а обезвоженный воздух выбрасывают в атмосферу.

Известное устройство содержит корпус, в котором установлена холодильная машина и средство транспортирования потока воздуха. Нижняя часть корпуса сообщена со сборником конденсата.

При прокачивании потока атмосферного воздуха, содержащего пары воды, происходит их конденсация на охлаждающем элементе холодильной машины и одновременное охлаждение потока воздуха, который выбрасывается в атмосферу.

Известный способ и устройство характеризуются низкой экономичностью использования холодопроизводительности холодильной машины, так как только незначительная ее часть используется для конденсации паров воды, особенно при малой влажности воздуха. При этом большая часть холодопроизводительности расходуется на охлаждение обезвоженного воздуха, выбрасываемого в атмосферу.

Известен способ извлечения воды из воздуха /WO, 93/04764, кл. E 03 B 3/28, 1993/, заключающийся в том, что формируют поток воздуха, содержащего пары воды, осуществляют искусственное охлаждение потока воздуха на одном участке второго потока, организуют теплопередачу между частями потока воздуха, находящимися по обе стороны от участка искусственного охлаждения, конденсируют пары воды в той части потока воздуха, температура которой ниже точки росы, и выбрасывают обезвоженный воздух в атмосферу.

В известном способе осуществляется однократное предварительное охлаждение входящего потока воздуха выходящим, что позволяет улучшить эффективность использования холодопроизводительности холодильной машины.

Одновременно сложная траектория движения потока воздуха создает большое газодинамическое сопротивление.

Известна установка для получения пресной воды из влажного воздуха, в работе которой используется солнечная энергия /DE 3313711, кл. E 03 B 3/28, 1984/.

За счет электроэнергии, получаемой от солнечных батарей, холодильный агрегат производит холод, который выделяется на теплообменнике-испарителе. Влажный воздух с помощью вентилятора продувается через воздуховод, в котором расположен испаритель. В результате контакта с поверхностью теплообменника-испарителя воздух охлаждается, содержащийся в нем пар становится насыщенным, частично конденсируется на поверхности теплообменника и стекает в водосборник.

Недостатками данной установки являются большие энергозатраты и низкая производительность.

Известна установка, в которой осуществляется аккумуляция холода для его использования в ночное время /EР 0430838, кл. E 03 B 3/28, 1991/.

В светлое время суток электроэнергия от солнечных батарей поступает на холодильный агрегат, который вырабатывает холод. С помощью вентиля холодильный агрегат подключается к термоизолированной емкости. Находящаяся в ней жидкость с помощью гидронасоса прокачивается через холодильный агрегат и охлаждается, в результате в термоизолированной емкости аккумулируется холод. Затем термоизолированная емкость с помощью вентиля отключается от холодильного агрегата и подключается к теплообменнику-конденсатору. Когда влажность воздуха достигает величины, близкой к 100%, включаются гидронасос и вентилятор. С их помощью холодная жидкость и влажный воздух пропускаются через конденсатор. Содержащийся в воздухе водяной пар конденсируется на его поверхности, а находящиеся в нем капли улавливаются каплеуловителем и захваченная влага стекает в водосборник.

Недостатком данной установки является необходимость расходования энергии и отсутствие автономности при работе установки.

Известно устройство для получения пресной воды, содержащее теплообменную поверхность, на которой конденсируется влага из наружного атмосферного воздуха и выпавший конденсат собирается в сосуде для сбора конденсата. Устройство содержит генератор энергии ветра для приведения в действие циркуляционной установки, отводящей тепло. Теплообменная поверхность и генератор энергии ветра расположены на плавучей опорной конструкции. Циркуляционная установка, отводящая тепло, имеет теплообменник, расположенный на определенном расстоянии ниже поверхности воды для использования холода глубинных слоев воды /заявка ФРГ N 3319975, кл. E 03 B 3/28, 1984/.

Недостатком этого устройства является наличие генератора энергии ветра, что приводит к сложности конструкции и снижает надежность действия, затрудняет обслуживание. Применение замкнутой системы циркуляции охлаждающей воды и расположение теплообменника в пределах глубины погружения плавучей опорной конструкции не позволяет обеспечить охлаждение циркулирующей воды до низких температур, что снижает эффективность действия устройства в целом и не позволяет обеспечить высокую его производительность.

Известно устройство для конденсирования росы, содержащее опору, на которой расположена конденсирующая поверхность. Поверхность электрически излирована от грунта, что обеспечивает создание на поверхности электростатического заряда. При определенных климатических условиях на поверхности конденсируется находящаяся в воздухе влага. Имеются сборник, в который с поверхности стекает конденсат, а также устройство для перекачивания конденсата в резервуар. В одной из конструкций конденсирующая поверхность выполнена в виде вертикального металлического листа, а сборником является канал вдоль кромки листа. Лист может поворачиваться вокруг опоры для установки по ветру. В другой конструкции конденсирующая поверхность выполнена в виде перевернутого конуса, разделенного на треугольные сегменты. Площадь поверхности может быть увеличена ребрами. Резервуар, который можно устанавливать под землей, может иметь пластмассовый мешок из проницаемого материала. Мешок надевают на нижний конец трубы подачи конденсата из сборника /GB 1603661, кл. E 03 B 3/28, 1981/.

Однако данное устройство недостаточно эффективно в эксплуатации ввиду большой его металлоемкости.

Наиболее близким техническим решением к заявленному по совокупности признаков является способ получения воды из воздуха, заключающийся в том, что формируют поток воздуха, содержащего пары воды, осуществляют искусственное охлаждение потока воздуха, конденсируют пары воды и получаемую при этом пресную воду-конденсат подают в емкость для сбора воды /RU 2081256, кл. E 03 B 3/28, 1997/.

Не умаляя достоинства ближайшего способа и устройства для его осуществления, заявленный способ все же является наиболее промышленно применимым, поскольку обладает рядом преимуществ по сравнению с известными традиционными способами и установками для их осуществления для получения воды из воздуха, а именно:

Дает воду высокого (дождевого) качества, которая может долго храниться;

Обеспечивает экологическую чистоту эксплуатации;

Установка для осуществления способа транспортабельна, проста и долговечна в работе, имеет вес 60 кг, небольшие габариты и стоимость.

Задачей изобретения является получение пресной воды при отсутствии или недоступности традиционных источников конденсации воды, содержащейся в атмосферном воздухе.

Задача решается за счет того, что в способе получения воды из воздуха, заключающемся в том, что формируют поток воздуха, содержащего пары воды, осуществляют искусственное охлаждение потока воздуха, конденсируют пары воды и подают получаемые при этом пресную воду-конденсат - в емкость для сбора воды, а охлажденный воздух - на конденсатор для обеспечения рабочего режима холодильного устройства, сформированный поток воздуха пропускают через фильтр воздухозаборника в условиях окружающей среды с относительной влажностью от 70 до 100% и температурой от +15 до +50 o C, а затем через электростатическое поле получаемый охлажденный воздух через соединительную юбку подают на радиатор конденсатора, при этом объем проходящего через радиатор воздуха из условия 20 г влаги на 1 м 3 воздуха и среднесуточной производительности установки до 250 л/сутки лежит в пределах 12-13 тыс. м 3 в сутки.

Способ реализуется следующим образом: принудительно, например, вентилятором, формируют поток атмосферного воздуха, содержащего пары воды, который, пройдя через фильтр воздухозаборника и электростатическое поле с напряженностью электрического поля E=1,5 B, поступает в конденсатор, где охлаждается ниже точки росы. Полученная при этом пресная вода-конденсат стекает по поддону в емкость для сбора воды. Охлажденный воздух через соединительную юбку подается на радиатор конденсатора для обеспечения рабочего режима холодильного устройства.

Нормальная работа способа получения воды из воздуха происходит при следующих основных условиях окружающей среды:

Относительная влажность от 70 до 100%;

Температура от +15 до +50 o C.

Более эффективно получение воды из воздуха происходит в среде с повышенной абсолютной влажностью воздуха и значительным суточным перепадом температуры.

Предельными (нерабочими) условиями способа добычи воды из воздуха и установки для осуществления способа, при которых должна быть прекращена его эксплуатация, являются:

Понижение температуры окружающего воздуха ниже +15 o C;

Повышение температуры окружающего воздуха выше +50 o C;

Понижение влажности окружающего воздуха ниже 70% при +20 o C;

Повышение запыленности окружающего воздуха свыше 0,5 г/м 3 ;

Отклонение корпуса конденсатора от вертикали на угол свыше 5 o .

Если способ добычи воды происходит непосредственно у моря, в хвойном лесу или на цветочном лугу, то получаемая вода будет обладать целебными свойствами.

Минерализация получаемой воды достигается двумя путями. Простая минерализация - путем помещения куска известняка в поддон или емкость для сбора воды, с заменой известняка раз в пять лет. Сложная минерализация (для создания программируемого минерального состава) - путем ввода в конструкцию микропроцессора и емкостей с солями.

ФОРМУЛА ИЗОБРЕТЕНИЯ

Способ получения воды из воздуха, заключающийся в том, что формируют поток воздуха, содержащего пары воды, осуществляют искусственное охлаждение потока воздуха, конденсируют пары воды и подают получаемые при этом пресную воду-конденсат - в емкость для сбора воды, а охлажденный воздух - на конденсатор для обеспечения рабочего режима холодильного устройства, отличающийся тем, что сформированный поток воздуха пропускают через фильтр воздухозаборника в условиях окружающей среды с относительной влажностью от 70 до 100% и температурой от +15 до +50 o C, а затем через электростатическое поле, получаемый охлажденный воздух через соединительную юбку подают на радиатор конденсатора, при этом объем проходящего через радиатор воздуха из условия 20 г влаги на 1 м 3 воздуха и среднесуточной производительности установки до 250 л/сутки лежит в пределах 12 - 13 тыс.м 3 в сутки.

Если Вы когда-нибудь оказывались в экстремальных условиях пребывания, Вам может быть знакома проблема с добычей воды. Например, путешественники имеют все шансы попасть в ситуацию, когда вода закончилась, а рядом нет ни реки, ни хоть какого-то родника. А все еще с детства знают, что человек может прожить без еды намного дольше чем без воды. Если Вы окажитесь надолго без воды, помощи можете и не дождаться.

Но есть способ получить немного воды из воздуха, так как она умеет конденсироваться . Чтобы получить количество воды, которого хватит для поддержания организма в функционирующем состоянии, нужно построить специальное устройство. Изготавливается оно из тех предметов, которые обычно берут с собой в путешествие. Для постройки конденсирующего устройства Вам понадобится:

  • Лопата
  • Кусок полиэтилена
  • Тонкая трубочка, которую используют в капельницах
  • Камни

Этапы конструирования


Вода из воздуха будет конденсироваться долго. Может пройти больше суток прежде чем наберется и пол литра воды. Поэтому рекомендуется сделать несколько таких «ловушек» для воды. В ночное время процесс конденсации идет намного быстрее чем днем – полиэтилен остывает быстро, а земля под ним – нет.

Пять лет назад израильский пенсионер Аркадий Левин изобрёл чудо-трубу позволяющую получать от 100 до 500 литров воды в сутки, просто из воздуха
Видео:
Электро энергия используется в двух случаях:

1. Запуска насоса откачивающего конденсат
2. Запуска вентилятора создающего тягу в безветренную погоду

Конструкция представляет из себя 12 метровую трубу, около метра в диаметре, внутри к которой находится спираль вентиляционной шахты

Разница температур на поверхности и на глубине приводит к конденсации воды из воздуха, которая подается наверх. "Этот конденсат чище дистиллированной воды, которую у нас тут продают в магазинах – это проверяли эксперты. Переносной вариант моего прибора дает около 10 литров воды в день, причем, он помещается в рюкзак. Это подходит для армии, для туристов, для геологов, для массы людей различных профессий, которые вынуждены передвигаться по местности на своих двоих и которым тяжело таскать на себе большие запасы жидкости", - отметил Левин.
- В основу нашей технологии положен способ использования вечного холодильника, которым является грунт земли, - объясняет автор новшества. - На глубине нескольких метров от поверхности почвы температура снижается, причем довольно резко. Если, скажем, просверлить скважину на два метра, то на этой глубине температура уже на 7 градусов ниже, чем на поверхности. Необходимо поместить в этот природный холодильник емкость, а по сути трубу, на внутренней поверхности которой создаются условия для конденсации паров.
- Это можно сделать в любом месте?
- Повсюду, и в Израиле, разумеется, тоже.
Для справки: существуют три температурные зоны грунта. Первая – на глубине до 2 метров, в ней температура меняется в течение суток. Вторая – от 2 до 8 метров, в ней температурный фон изменяется каждый сезон: зима, весна, лето, осень. Третья начинается на глубине примерно 8 метров, где температура всегда практически неизменна. Таковой она была и тысячу лет назад.
- Нас интересует именно эта константная зона, - подчеркнул собеседник. - С ней мы в основном и работаем. Примерно год назад были пробурены три скважины, каждая глубиной 12 метров, мы оснастили их трубами и начали исследования. Главная идея в том, что именно на этом расстоянии от поверхности и находится природный холодильник, а мы искали именно бесплатный холод.
Левин показывает мне таблицу, на которой видно, что, к примеру, при температуре на поверхности 30 градусов тепла и при влажности 70 процентов достаточно охладить воздух всего на 6 градусов, чтобы получить 21,3 грамма воды из кубического метра воздуха в час.
- Следовательно, прогнав 100 кубометров воздуха, мы можем получить 2,1 литра в час. Если на улице 45 градусов, что в разгар лета в Израиле не редкость, то при той же влажности с тех же 100 кубов воздуха можно получить уже 4,5 литра воды.
- Ты говоришь, воздух надо прогнать… Но для этого ведь нужны моторы, насосы и другое энергоемкое оборудование.
- Ты прав. На получение холода, как правило, уходит до 70 процентов энергии. Так вот, у нас эти 70 процентов бесплатны. Они под землей. А там, на глубине, холод естественный, а значит, даровой. Как я уже говорил, воздух, насыщенный влагой, ниже точки росы превращается в искомую влагу.
- А что с оставшимися 30 процентами энергозатрат?
- Посмотри на соседнюю установку: воздух в скважины нагнетается простыми серийно выпускаемыми турбинками, которые приводит в движение ветер. Можно использовать и солнечную энергию. Электричество требуется только на то, чтобы откачать накопившуюся в трубах под землей воду, но на это уходит несколько секунд.

Нельзя выжать сок из камня, а вот добыть воду из пустынного неба вполне возможно, и все благодаря новому устройству, которое использует солнечный свет для всасывания водного пара из воздуха даже при низкой влажности. Устройство может производить до 3 литров воды в день и, по словам исследователей, в будущем технология станет еще эффективнее. Это значит, что в домах жителей засушливых районов в скором времени может появиться источник чистой воды на солнечной батарее, что поможет существенно повысить уровень жизни населения.

В атмосфере находится порядка 13 триллионов литров воды, что эквивалентно 10% от запаса всей пресной воды в озерах и реках нашей планеты. На протяжении многих лет исследователи разрабатывали технологии конденсации воды их воздуха, но большинство из них требует несоразмерно больших затрат электроэнергии, так что в странах с развивающейся экономикой они вряд ли окажутся востребованы большинством.

Чтобы найти универсальное решение, исследователи под руководством Омара Яги, химика из Калифорнийского университета в Беркли, обратились к семейству кристаллических порошков, называемых металлическими органическими каркасами или MOF. Яги разработал первые MOF-кристаллы, образующие объемные сети, около 20 лет назад. Основой для структуры этих сетей выступают атомы металлов, а липкие полимерные частицы соединяют ячейки вместе. Экспериментируя с органикой и неоганикой, химики могут создавать различные типы MOF и контролировать то, какие газы вступают с ними в реакцию и насколько прочно они удерживают те или иные вещества.

За последние два десятилетия химики синтезировали более 20 000 MOF, каждый из которых обладает уникальными свойствами захвата молекул. Например, Яги и другие недавно разработали MOF, который поглощает, а затем высвобождает метан, делая их своего рода бензобаками большой емкости для транспортных средств, работающих на природном газе.

В 2014 году Яги и его коллеги синтезировали MOF-860 на основе циркония, который превосходно поглощал воду даже в условиях низкой влажности. Это привело его к Эвелин Ванг, инженеру-механику Массачусетского технологического института в Кембридже, с которой он ранее работал над проектом использования MOF для кондиционирования воздуха в автомобиле.

Система, разработанная Ван и ее учениками, состоит из килограмма пылевидных кристаллов MOF, спрессованных в тонкий лист пористой меди. Этот лист помещается между светопоглотителем и пластиной конденсатора внутри камеры. Ночью камеру открывают, позволяя окружающему воздуху диффундировать через пористый MOF, в процессе чего молекулы воды, чтобы прилипать к ее внутренним поверхностям, собираются в группы по восемь штук и образуют крошечные кубические капельки. Утром камера закрывается, и солнечный свет проникает через окно сверху устройства, нагревая MOF и освобождая воду, что превращает капли в пар и транспортирует его к более холодному конденсатору. Разность температур, а также высокая влажность внутри камеры заставляют пар конденсироваться в виде жидкой воды, которая капает в коллектор. Установка работает настолько хорошо, что при непрерывном запуске она вытягивает 2,8 литра воды из воздуха в день, сообщает сегодня команда Berkeley и MIT.

Стоит отметить, что установке еще есть куда расти. Во‑первых, цирконий стоит 150 долларов за килограмм, что делает устройства для сбора воды слишком дорогими, чтобы его можно было массово производить и продавать за скромную сумму. Яги говорит, что его группа уже успешно спроектировала водосборный MOF, в котором цирконий заменен в 100 раз более дешевым алюминием. Это может сделать будущие водосборщики пригодными не только для утоления жажды людей в засушливых районах, но, возможно, даже для снабжения водой фермеров в пустыне.

Предлагаю Вашему вниманию интересную статью на которую случайно наткнулся и выкладываю сюда. Сайт с которого он был сохранен назывался магов.нет, но у меня он туда так и не зашел. Поэтому выкладываю текст статьи и схемки:
"Проблема воды на приусадебном участке, на даче, в кооперативе не является редкостью. Прокладка водопровода или бурение скважины не всегда может себе позволить даже кооператив. Копание колодца вряд ли дешевле и целесообразней.
Есть ли выход из этого положения?
Есть и довольно простой и надёжный.
Насыпается пирамида из щебня на бетонном основании. Днём в тёплое время года щебёнка прогревается прямыми солнечными лучами и потоками тёплого воздуха. Ночью водяные пары, содержащиеся в атмосфере, конденсируются на остывшей щебёнке и вода стекает в углубление фундамента и далее по отводной трубе - в место сбора.
Высота пирамиды выбирается от потребности воды.
Ориентировочно, при высоте 2,5 м. за сутки такая конструкция может дать, в зависимости от влажности воздуха и суточных перепадов температуры, от 150 до 350 литров воды, что практически обеспечит любой приусадебный или дачный участок.

Для насыпки пирамиды лучше брать крупную щебёнку (гравий) размером 5-7 см. т.к. тогда вся конструкция свободно будет продуваться тёплым воздухом.
Щебень из гранита можно считать пределом мечтаний.

Для насыпки щебня на основание в форме пирамиды используется металлический каркас, который устанавливается на фундамент и по нему выравниваются грани.
После окончания формовки сверху можно натянуть металлическую оцинкованную сетку для предотвращения сползания щебня.
Высота фундамента выбирается по желанию и материальным возможностям владельца. Однако, он должен быть достаточно прочным, чтобы выдержать вес щебня.
Чтобы фундамент не делать высоким для стока воды, лучше всего пирамиду строить на пригорке, если на участке или рядом такой имеется.

Ориентированная по краям света пирамида помимо конденсации воды будет оздоравливать и нормализовать всё окружающее пространство.

Если есть биопатогенные зоны, то они будут нейтрализованы;
вода, полученная в пирамиде, будет целебной и для человека, и для растений, и для животных;
Если вода из этого конденсатора будет использоваться для питья и приготовления пищи, что весьма желательно, то перед насыпкой пирамиды, основание фундамента и весь щебень следует хорошо промыть водой, а полученную воду пропускать через механический фильтр.

Чтобы эта конструкция приносила максимальную пользу, строить её следует с соблюдением всех пропорций, которые даны в таблице 1 для наиболее вероятных размеров пирамиды.
Если у кого-либо появится желание и возможность рядом с пирамидой построить бассейн, куда будет стекать вода, то переоценить такой комплекс будет практически невозможно.
Утренняя ванна, принятая в воде, пропитанной энергией пирамиды, на всю жизнь заменит всех врачей и лекарства.
В качестве бассейна можно использовать обыкновенную ванну, установленную с северной стороны пирамиды.

Саму пирамиду весьма желательно строить с южной стороны по отношению к дому или дачной постройки.

В целях экономии средств, материалов, времени постройки и площади, пирамиду можно построить одну на несколько участков.

Чтобы дождевая вода не попадала на конструкцию, над ней желательно сделать навес из прозрачного материала (стеклопластик, плёнка, стекло)