Главная · Освещение · Российский спецназ получит двухсредный дыхательный аппарат. Ребризеры Система замкнутого дыхания

Российский спецназ получит двухсредный дыхательный аппарат. Ребризеры Система замкнутого дыхания

Это аппарат, который очищает использованный для дыхания газ. Необходимый для дыхания кислород непрерывно натекает (подается принудительно) в контур смеси газов. Отработанный газ остается в цепи: он проходит через однонаправленный канал и очищается от СО2. После очистки газ вновь подается в мешок вдоха, затем цикл повторяется.

Ребризер: новая технология?

Знаете ли Вы, что первый аппарат для погружений под воду был ребризером? Он был создан в 1878 инженером Флеуссом и состоял из резиновой маски, подсоединенной к дыхательному мешку, который наполнялся кислородом, подаваемым из медного баллона; углекислый газ поглощался "фильтром": переплетенными волокнами, пропитанными каустическим поташем (углекислый калий).В 1915 идея Флеусса была заимствована сэром Робертом Дэвисом при создании аппарата для аварийного всплытия с подводных лодок, который затем начали роизводить во всем мире. Ганс Хасс - первый подводный фотограф, погружавшийся на ребризере.

ARO - (кислородный ребризер замкнутого цикла) родом из Италии, был создан в период между I-ой и II-ой Мировыми войнами. В 1933-34 годах итальянские военные водолазы Teseo Tesei и Elios Toschi по достоинству оценили незаменимость этого аппарата в военных операциях, в устройство были внесены некоторые изменения, и оно стало играть первую скрипку в операциях бойцов отрядов Gamma и Maiali.

После войны ARO использовался военно-морским флотом для тренировки дайверов.

ARO по сей день используется при обучении и для погружений на очень большие глубины.

Между тем, в 1969 году компания Dra"ger разрабатывает очень актуальные нитроксные аппараты полузамкнутого цикла и выпускает FGT (этот аппарат до сих пор используется многими военными водолазами).

Позже вышел FGT III, гелиоксный полузамкнутого цикла, для погружений на глубины до 200 метров.

В последующие годы Dra"ger довел до совершенства систему для обеспечения непрерывного потока и занял лидирующие позиции в производстве этих комплектующих.

В 1995 году стали производиться первые ребризеры полузамкнутого цикла для спорта.

На сегодняшний день существует три основных типа ребризеров - кислородные, полузамкнутые и замкнутые аппараты.

Кислородные ребризеры

Данный тип аппаратов используют чистый кислород и являются полностью замкнутыми. История их создания и использования берет свое начало в 19 веке.Данные аппараты активно использовал Ганс Хаас и его жена Лота Хаас – известнейшие подводные исследователи и фотографы. Во время войны данные аппараты активно использовались подводными диверсантами всех стран участниц войны. В настоящее время кислородные ребризеры претерпели незначительные изменения и применяются в основном военно-морскими силами. Аппараты этого типа являются наиболее компактными,простыми по конструкции и надежными. Как правило они содержат один дыхательный мешок,один баллончик с кислородом и канистру с химическим поглотителем. В дыхательный мешок подается чистый кислород через специальное отверстие-дюзу с определенной скоростью,либо периодически.Далее вы вдыхаете кислород и выдыхаете уже в канистру с содой –где поглощается образовавшийся углекислый газ и все снова по кругу. Никакой электроники, только манометр.Наиболее известные изделия этого класса – LAR-V немецкой фирмы draeger , Oxyng французской компании spirotechnique , изделия итальянцев от OMG и конечно большое количество советских аппаратов - ИПСА, ИДА-64 , ИДА-76 , ИДА -71 и т.д. Основным недостатком этих аппаратов было и есть – ограничение по глубине - 6 метров.

Полузамкнутые ребризеры

Эти аппараты делятся на два типа: aSCR – аппараты с активной подачей газа и pSCR – с пассивной подачей соответственно.

aSCR – эти аппараты были разработаны в пятидесятых годах и использовались,как это всегда обычно бывает военными, в основном водолазами –саперами. Принцип работы предельно прост. В баллоны заправляется nitrox (в основном) , газ поступает постоянным потоком через специальную дюзу (draeger Dolphin, Ray) или через регулируемый игольчатый клапан (Azimuth, Ubs-40) в мешок вдоха,затем вы выдыхаете соответственно в мешок выдоха, далее газ поступает в канистру с химопоглотителем и опять в мешок вдоха. При этих процедурах, как правило возникает избыток газа, который удаляется в воду через специальный клапан.

aSCR –самые популярные рециркуляционные аппараты на любительском рынке, на сегодняшний день. Они просты, надежны и легки в обучении. Основное их преимущество - экономия газа,использование смесей нитрокс и малошумность. На аппаратах, в базовой комплектации, нет никакой электроники и рекомендуемые температурные режимы эксплуатации от -1 до +35 градусов, что тоже является преимуществом. Недостатками являются - ограничение по глубине, отсутствие преимуществ по режимам декомпрессии и большая разница между газом в баллонах и газом в дыхательном контуре, что следует учитывать при планировании. Разница тем больше,чем выше физическая нагрузка и может варьироваться от 5 до 20%.

Наиболее известные модели Mix-55 , Mixegers 78 (Франция) , Aromix OMG (Италия), Draeger FGT I (Германия) , АКА – 60 (Россия).Наиболее известные модели для любительского рынка - Draeger Dolphin (Германия) , Draeger Ray (Германия) – сняты с производства. Fieno (Япония) – снят с производства. Azimuth Pro (Италия) , UBS -40 (Италия) – производятся до сих пор.

pSCR – отличаются от aSCR тем,что газ подается не через дюзу,а через стандартный регулятор в соответствии с минутным потреблением смеси ныряльщика. В результате прямого принудительного добавления газа, состав реальной дыхательной смеси в контуре пассивной системы более постоянный, чем у аппаратов с активной подачей газа и не изменяется значительно при изменении физических нагрузок.

Поскольку аппарат пассивного типа привязан к значению RMV , планирование погружения облегчается.

Основным недостатком этих аппаратов является повышенное сопротивление вдоху –выдоху, поскольку дыхательный мешок располагается в районе поясницы. (имеются ввиду аппараты Halcyon и его клоны – Ron , SF-1 и т.п.). Интересной разработкой этого направления является аппарат K2-advantage (у него дыхательный мешок на груди).

Аппараты данного типа слабо распространены и не сертифицированы в Европе.

Замкнутые ребризеры

Подразделяются на eCCR и mCCR .

eCCR – этот тип аппаратов является наиболее сложным,продвинутым и соответственно дорогостоящим.

Цена изделий колеблется от 9 до 14 тыс.долларов. Это самые тихие аппараты, но самое главное их преимущество – это возможность поддерживать постоянное парциальное давление кислорода, за счет этого происходит эфеективная и быстрая декомпрессия, а также увеличиваются бездекомпрессионные пределы. Как правило, в аппарате используется два баллона- один с кислородом, второй с дилуентом (воздухом,тримиксом,гелиоксом). В ребризере используется электроника для отслеживания парциального давления кислорода и для подачи кислорода в контур по необходимости,через электромагнитный клапан (соленоид). В принципе это все,отличаются аппараты нюансами – количеством датчиков кислорода, расположением дыхательных мешков,наличием встроенных декомпрессиметров и т.д. Наиболее известные и популярные аппараты данного типа - Inspiration Vision (Англия) , Megalodon (США) . В настоящее время на рынке появилось достаточно много электронных аппаратов замкнутого типа – Optima (США) , Sentinel (Англия) , Voyager (Италия) и т.д. Но лидеры остались прежние.

Самое главное - eCCR требуют к себе уважительного отношения,повышенного внимания и очень хорошего обучения. Спуски на замкнутых аппаратах требуют больше дисциплины и ответственности,следовательно их пользователями должны быть люди,регулярно погружающиеся и хорошо разбирающиеся в специфике ребризеров. При работе с CCR существует повышенный риск нарваться на гипоксию или гипероксию.

mCCR - отличаются от электронных аппаратов тем,что у них кислород в контур подается не через соленоид по команде компьютера,а постоянно натекает через дюзу (почти как в SCR или в простом кислородном аппарате) , но подается он в меньшем количестве чем необходимо организму человека, т.е. где-то 0.6-0.7 л/мин. Электроника присутствует для отслеживания значений po2 . Недостаток кислорода подается вручную. Как это обычно и бывает в нашей стране – что имеем не храним, потеряем плачем. Иностранцы брали наши ИДА-71 и делали из них mCCR . На сегодня самыми популярными аппаратами данного типа являются – KISS (Канада) , rEVO (Бельгия) , Submatix (Германия) , Pelagian (Таиланд) .

Цены колеблются от 5 до 8 тыс.долларов.

Враг не пройдет! Даже под водой


Схема работы и органы управления ребризера «Inspiration»

Тем не менее масштаб выполняемых им задач был огромен. В день «X» советский морской спецназ должен был высадиться с многочисленных подводных лодок, самолетов, вертолетов, с коммерческих и промысловых кораблей под чужими флагами. Черные призраки, внезапно появившиеся из-под воды, должны были вывести из строя всю систему противолодочной обороны в Атлантике, Тихом океане и Средиземном море, уничтожить центры управления и связи морских соединений NATO, заблокировать передовые базы, захватить важные стратегические объекты и удержать их до момента высадки главного десанта. Готовился морской спецназ очень даже серьезно, участвуя в многочисленных боевых действиях по всему миру — Анголе, Вьетнаме, Египте, Никарагуа, Эфиопии, совершая «круизы» по иностранным портам с целью рекогносцировки и постоянно тренируясь на кораблях Академии наук СССР и в секретных отсеках плавучих рыбоконсервных заводов. По данным NATO, советский подводный спецназ нелегально высаживался только на побережье Швеции и Норвегии более 150 раз. Большинство же вылазок остались незамеченными. Диверсанты не оставляли за собой следов. Даже таких эфемерных, как пузыри на воде.

Следы на воде

Пузыри на воде — вот первое, что притягивает взгляд внешнего наблюдателя, когда он глазеет на любительские подводные погружения. Отсутствие пузырей — тревожный признак и обычно сопровождается активными действиями по подготовке и началу спасательной операции. Однако есть одно исключение — погружение с ребризерами (от англ. «rebreather»). Дайвер с ребризером в воде практически бесшумен, как и обитатели подводного царства, — он не выпускает булькающих пузырей, и водоплавающие принимают его «за своего».

Широко распространенный

в качестве основного оборудования для погружений акваланг конструкции Кусто-Ганьяна является дыхательным аппаратом открытого цикла: ныряльщик вдыхает воздух из баллона, а выдыхает его в воду. При этом во вдыхаемом воздухе содержится 21% кислорода, а в выдыхаемом около 16% (при нормальном атмосферном давлении, то есть на поверхности воды). Таким образом, большая часть воздуха просто расходуется впустую. Если же выдыхаемый воздух очистить от углекислого газа и обогатить кислородом, его можно использовать повторно. Это осуществляется химпоглотителями и добавлением небольших порций кислорода (а вообще, с увеличением глубины потребность в кислороде уменьшается за счет увеличения его парциального давления). Парциальное давление — давление компонента газовой смеси, которое он оказывал бы, если бы один занимал объем всей смеси.

Немного истории

На этих принципах и основаны дыхательные аппараты закрытого или полузакрытого цикла — ребризеры. Не стоит думать, что это достижение современных технологий. Первый ребризер был разработан англичанином Генри Флеуссом еще в 1876 году. Ребризер Флеусса представлял собой прорезиненную матерчатую оболочку, дыхательный мешок, медный цилиндр с кислородом и поглотителем углекислого газа. В качестве поглотителя использовалась пенька, пропитанная едким натром (гидроксидом натрия). При необходимости кислород добавлялся вручную. Хотя этот аппарат сейчас кажется примитивным — для тех времен он работал весьма неплохо, позволяя проводить под водой до 3 часов. Глубина погружения с аппаратом Флеусса была ограничена из-за использования чистого кислорода (чистый кислород токсичен уже при погружении на 5−7 м, но в то время этот факт не был известен). Тем не менее в 1880 году известный английский водолаз Александер Ламберт погрузился в аппарате Флеусса, чтобы загерметизировать люк в затопленном туннеле. Люк находился в 300 м от входа в туннель на глубине 20 м!

В 1907 году немецкая компания Draeger представила ребризер для спасения людей с тонущих подводных лодок. Этот ребризер, как и аппарат Флеусса, во многом послужил основой для разработки в 1911 году англичанином Робертом Дэвисом, директором компании Siebe Gorman, аппарата собственной конструкции, названного «Davis False Lung» («Искусственное легкое Дэвиса»). В 1915 году съемочная группа первого подводного фильма, снятого по книге Жюля Верна «Двадцать тысяч лье под водой», использовала во время съемок именно модифицированные ребризеры Флеусса-Дэвиса.

С началом Второй мировой войны появляется необходимость в тайных подводных операциях и ребризеры прочно занимают ведущее место среди подводного оборудования военно-морских флотов многих стран.

В 1968-м доктор Уолтер Старк разрабатывает Electrolung — первый дыхательный аппарат замкнутого цикла, управляемый электроникой. Это был качественный шаг вперед в технологии, которая до этого оставалась традиционной и базировалась на механическом дозировании газов.

До середины 1990-х годов основными пользователями ребризеров были военные, исследователи и профессиональные водолазы. Военные ценили в аппаратах закрытого цикла малозаметность и бесшумность (присутствие боевых подводных пловцов не выдают пузыри), немагнитность (ребризер может быть изготовлен из немагнитных материалов). Исследователи подводного мира — отсутствие пузырей (обитатели подводного мира не пугаются, их легче фотографировать и изучать). Водолазам ребризеры давали возможность погружаться на большие глубины и проводить там большее время, увеличивая эффективность работы.

С середины 1990-х годов ребризеры на газовых смесях начали потихоньку завоевывать рынок любительского дайвинга. Сейчас выпускается довольно много моделей ребризеров для любительских погружений, и хотя стоимость их достаточно высока (от $2−5 тыс. за полузакрытые системы до $8−15 тыс. за системы с закрытым циклом), они приобретают все большую популярность.

Закрытая дыхательная система

Дыхательный аппарат полностью закрытого цикла состоит из двух небольших баллонов и системы поглощения углекислого газа. Один баллон содержит кислород, второй — газ-разбавитель (дилюент). Существует системы, работающие на чистом кислороде (без разбавителя), но глубина погружения с ними ограничена 5−7 м (из-за токсичности чистого кислорода), в основном такими были старые военные системы.

В качестве поглотителя обычно используются гидроксид натрия (едкий натр), или гидроксид кальция (гашеная известь), или их смесь. Выдыхаемый воздух пропускается через поглотитель и попадает в дыхательный мешок (counterlung — противолегкое). Вдох осуществляется из дыхательного мешка. Иногда он разделен на две части — для вдоха и для выдоха. Датчики давления и содержания кислорода и углекислого газа дают сигналы электронной системе, которая с помощью электромагнитных клапанов при необходимости производит добавление кислорода и газа-разбавителя (система управления старается в любых условиях поддерживать парциальное давление кислорода в безопасных пределах).

При необходимости можно подавать кислород из одного баллона или газ-разбавитель из другого вручную. В качестве газа-разбавителя можно использовать в зависимости от стоящих задач воздух, нитрокс (смесь кислорода и азота с большим, чем 21%, содержанием кислорода), или специальные смеси (например, для сверхглубоких погружений используют Trimix («тримикс») — смесь, состоящую из гелия, азота и с невысоким содержанием кислорода).

Система закрытого цикла при нахождении на постоянной глубине не выпускает никаких пузырей. При уменьшении глубины объем дыхательной смеси в дыхательном мешке возрастает и излишки стравливаются через клапан. При увеличении глубины дыхательный мешок автоматически или вручную пополняют газом-разбавителем для поддержания постоянного объема.

Полузакрытая дыхательная система

Отличается от закрытой наличием всего одного баллона с дыхательной смесью. Обычно в качестве такой смеси используется нитрокс (смесь кислорода и азота с большим, чем 21%, содержанием кислорода). Чтобы компенсировать расход кислорода (азот не расходуется в процессе дыхания), в полузакрытых системах часть смеси при выдохе выпускается в воду (до 25% от объема выдоха). Для снижения шума перед выпуском смесь пропускается через специальный фильтр, который «дробит» пузырьки на более мелкие и рассеивает их за спиной дайвера.

Надежность

Отказ какого-либо из компонентов ребризера под водой может привести к смерти дайвера. Поэтому производители принимают все возможные меры для повышения их надежности. Датчики, индикаторы и электромагнитные клапаны многократно дублируются. Кроме этого, в ребризере обычно предусмотрена независимая аварийная система — на случай полного отказа. В качестве аварийной системы обычно выступает аппарат открытого цикла (точнее, редуктор-регулятор), присоединенный к баллону ребризера с дыхательной смесью или независимому маленькому баллону. Это дает возможность дайверу даже при полном отказе или аварии ребризера всплыть на поверхность.

Преимущества

Первый основный плюс ребризера — большое время погружения. Одной зарядки ребризера хватает, в зависимости от модели, глубины погружения и интенсивности дыхания, на 2−5 часов погружений.

Ребризеры также значительно увеличивают бездекомпрессионные пределы. Некоторые наиболее сложные закрытые кислородно-управляемые системы могут даже оптимизировать содержание кислорода для дыхания в газовой смеси согласно профилю погружения.

Еще одно преимущество ребризеров — сохранение тепла и влаги. В системах с открытой схемой дыхания, особенно в условиях холодной воды, расходуется тепло на согревание вдыхаемого воздуха и происходит обогащение его водяными парами. В ребризерах при поглощении углекислого газа выделяется тепло. Поскольку выдох не происходит в воду, тепло и водяной пар сохраняются в пределах замкнутого цикла.

Как уже было сказано выше, ребризеры производят значительно меньше шума и пузырей, что позволяет приближаться даже к самым пугливым обитателям морских глубин и наблюдать за их жизнью (с обычным аквалангом это зачастую просто невозможно).

Недостатки

За преимущества ребризеров приходится платить высокую цену. Прежде всего, в прямом смысле этого слова. Стоимость полузакрытых систем составляет от $2 до $8 тыс., полностью закрытых — от $8 до $15 тыс. И надежды, что они подешевеют в ближайшем будущем, довольно мало.

Ребризеры требуют регулярного технического обслуживания после каждого погружения — более-менее простого у полузакрытых систем (проверка и замена поглотителя углекислого газа, очистка шлангов) и более сложного у закрытых. Электронные датчики парциального давления кислорода должны регулярно проверяться и периодически калиброваться.

Обучение плаванию с ребризерами также находится пока еще в зачаточном состоянии, хотя ситуация меняется довольно быстро. Все производители подобных аппаратов имеют собственные требования к подготовке. В настоящее время есть 4 организации (IANTD, TDI, PSA, ANDI), стандартизировавшие курсы обучения. Теперь аппараты закрытого цикла достаточно доступны. Можно после нескольких часов инструктажа совершить только одно погружение или пройти полный глубоководный курс с сертификацией (3−7 дней, $500−1500, стоимость обучения часто входит в цену аппарата).

Изолирующий дыхательный аппарат ИДА-59М (рис. 9) предс­тавляет собой автономный дыхательный аппарат регенеративного типа с замкнутым циклом дыхания. Аппарат изолирует органы дыхания подводника от окружающей среды и предназначен для обеспечения дыхания подводника при выходе из апл, а также для временного поддержания жизнедеятельности в отсеках аварийной пл. Основные составные части аппарата ИДА-59М показаны на рис. 9:

1. Нагрудник 1 с пришитым нижним брасом 6 и поясным ремнем 16.

3. Азотно-гелиево-кислородный баллон 3 с редуктором 5 и крестовиной 4.

4. Кислородный баллон 14 с редуктором 13 и переключателем 12.

5. Клапанная коробка 9 с гофрированными трубками вдоха и выдоха.

6. Кольцевой дыхательный мешок 10, на котором распо­лагается дыхательный автомат 8 и предохранительный клапан 11.

Нагрудник с поясным ремнем и нижним брасом служит для монтажа узлов аппарата и закрепления на туловище подводника. Регенеративный патрон (рис. 10). Его двустенный корпус вмещает 1,7…1,8 кг зернистого регенеративного вещества О-3. На верхней крышке имеются штуцера 1, 2 для присоединения к дыхательному мешку, на нижней – зарядный штуцер с колпачковой гайкой 8. Донышки внутреннего корпуса 6 оборудованы решетками 3, 7. Кольцевые полочки 5 препятствуют проходу выды­хаемой смеси вдоль стенок патрона. Выдыхаемая газовая смесь через штуцер выдоха 2 посту­пает в патрон, проходит через решетку 3 через слой вещества О-3, где ос­вобождается от углекислого газа и обогащается кислородом, за­тем через нижнюю решетку 7 поступает в зазор между внутрен­ней и наружной стенками и далее через штуцер вдоха 1 в ды­хательный мешок. Азотно-гелиево-кислородный баллон (рис. 9) емкостью 1 литр служит для хранения искусственно приготовленной газовой смеси, содержащей 60% азота, 15% гелия и 25% кислорода при давлении 180…200 кгс/см2 (при учебных спусках допускается давление не менее 100 кгс/см2). Баллон имеет трехцветную окраску: черную с буквой «А» (азот), коричневую с буквой «Г» (гелий) и голубую с буквой «К» (кислород). К баллону с помощью резьбовых соединений подсоединены редуктор 5 и крестовина 4. Азотно-гелиево-кислородный редуктор 5 предназначен для по-нижения давления азотно-гелиево-кислородной смеси, находящейся в баллоне, до давления на 5,3 ¸ 6,6 кгс/см2 большего, чем давление окружающей среды.


Рис. 9. Аппарат изолирующий дыхательный ИДА-59М

1 – нагрудник; 2 – регенеративный патрон; 3 – азотно-гелиево-кислородный баллон; 4 – крестовина; 5 – редуктор; 6 – брасовый ремень; 7 – ремень с карабином; 8 – дыхательный автомат; 9 – клапанная коробка; 10 – дыхательный мешок; 11 – предохранительный клапан; 12 – переключатель; 13 – редуктор; 14 – кислородный баллон; 15 – карабин;16 – поясной ремень

Рис.10. Регенеративный патрон

1 – штуцер вдоха; 2 – штуцер выдоха; 3, 7 – решетки; 4 – наружный корпус; 5 – кольцевая полочка; 6 – внутренний корпус; 8 – колпачковая гайка

Азотно-гелиево-кислородный редуктор

Азотно-гелиево-кислородный редуктор состоит из запорного вентиля и редуктора, размещенных в одном корпусе. Запорный вентиль с малым крутящим моментом открывается вращением про­тив часовой стрелки, закрывается по часовой стрелке. На корпусе редуктора имеются два штуцера: штуцер высокого давления, закрытый колпачковой гайкой и служащий для зарядки баллона АГК смесью, и штуцер низкого давления, который под­соединяется к соединительной трубке дыхательного автомата. Редуктор работает следующим образом (рис. 17). Через открытый кла­пан вентиля газовая смесь из баллона АГК попадает под кла­пан редуктора и через отверстие в седле клапана напол­няет камеру низкого давления 2. Камера редуктора сверху закрыта резиновой мембраной 6, над которой помещается ре­гулировочная пружина 7 и металлический колпачок с отверстиями. По мере наполнения камеры низкого давления резиновая мембрана 6 прогибается и сжимает регулировочную пружину 7, освобождая толкатель клапана, который в свою очередь дает возможность клапану 3 редуктора под дейст­вием пружины перемещаться вверх до полного перекрытия отверстия в седле клапана редуктора. Приток газа в камеру низ­кого давления прекращается, если газ из камеры низкого давле­ния не расходуется. При истечении газа мембрана 6 прогибается вниз, клапан 3 редуктора под действием толкателя снова открывается и пропускает газ в камеру низкого давления. Из камеры низкого давления через канал и фильтр газ попадает в крестовину 1. Крестовина служит для соединения камеры низкого давления азотно-гелиево-кислородного редуктора с пускателем 4 ДГБ и дыхательным (легочным) автоматом 13, для чего к крестовине присоединены соединительная трубка дыхательного автомата и шланг 10 с ниппелем байонетного замка 9 от ДГБ (см. рис. 16). В одном из штуцеров крестовины расположен предохраните­льный клапан, стравливающий азотно-гелиево-кислородную смесь из камеры низкого давления редуктора АГК при давлении на 14…17 кгс/см2 больше окружающего. Кислородный баллон емкостью 1 литр служит для хранения медицинского кислорода (99%, не более 1% азота) при давлении 180…200 кгс/см2 (при учебных спусках допускается дав­ление не ниже 100 кгс/см2). На баллоне имеются редуктор 23 с запорным вентилем и переключатель 20 (см. рис. 17). Кислородный редуктор по устройству аналогичен азотно-гелиево-кислородному редуктору, но в отличие от него имеет гер­метичный колпачок. Поэтому под колпачком на любой глубине сохраняется атмосферное давление в 1 кгс/см2. В связи с этим давление в камере низкого давления кислородного редуктора также остается постоянным – 5,5 ¸ 6,5 кгс/см2 – в течение все­го периода работы редуктора и не зависит от величины окружаю­щего давления. На глубине 55…65 м, когда давление окру­жающей среды становится равным давлению в камере редуктора, истечение кислорода в дыхательный мешок полностью прекращает­ся.

Клапанная коробка (рис. 11) с гофрированными трубками вдоха и выдоха служит для:

– присоединения дыхательного аппарата к гидрокомбинезону;

– обеспечения во время дыхания циркуляции газовой смеси в аппарате по замкнутому циклу;

– для включения на дыхание в аппарат и переключения на дыхание в атмосферу.

Клапанная коробка состоит из корпуса, слюдяных клапанов вдоха 5 и выдоха 3, прижимаемых пружинами, и пробкового крана 8.


Рис.11. Клапанная коробка:

1 – патрубок выдоха; 2 – направляющая клапана; 3 – клапан выдоха; 4 – прокладка; 5 – клапан вдоха; 6 – патрубок вдоха; 7 – штуцер; 8 – пробковый кран

Клапанная коробка трубкой вдоха с патрубком 6 соеди­нена с дыхательным мешком, трубкой выдоха с патрубком 1 с регенеративным патроном. При вдохе в клапанной коробке создается разряжение, вследствие чего клапан выдоха 3 закрывается, а клапан вдо­ха 5 открывается и дыхательная смесь поступает в легкие. При выдохе в клапанной коробке давление повышается, клапан вдоха 5 закрывается, а клапан выдоха 3 открывается и пропускает выдыхаемую газовую смесь в регенеративный патрон. С помощью пробкового крана 8 производится включение в ап­парат (ручка крана при этом поворачивается в сторону кислородного баллона) или переключение на дыхание в атмосферу (ручка крана при этом поворачивается в сторону АГК-баллона). Клапанная коробка имеет штуцер 7 для подсоединения к маске с переговорным устройством или гидрокомбинезону СГП-К при помощи накидной гайки.

Дыхательный мешок (рис. 12) имеет кольцевую форму и выполнен в виде воротника, облегающего шею подводника. Такая форма дыхательного мешка улучшает остойчивость, что особенно важно при свободном всплытии, и поддерживает голову подводника над поверхностью воды после всплытия. Вместимость дыхательного мешка 6…8 л. Изготовлен он из мягкой прорезиненной ткани и крепится к нагруднику с помощью шлевок. В верхней части дыхательного мешка (на тыльной стенке) размещен автоматический пускатель (дыхательный автомат) 3. В нижней части закреплены гофрированные трубки выдоха 5 и вдоха 1, предохранительный клапан 6, два штуцера 8 с накидными гайками для присоединения регенеративного патро­на, штуцера 7 и 9 для присоединения кислородного и азотно-гелиево-кислород-ного баллонов. Внутри мешка имеется тройник 10, соединяющий трубку вдоха 1 с отрезком трубки от регене­ративного патрона и дыхательной трубкой 4, имеющей боковые отверстия по всей длине. Эти отверстия обеспечивают поступле­ние газовой смеси на вдох из мешка при любом положении под­водника. Соединительная трубка 2 подводит газовую смесь из АГК-баллона под клапан дыхательного автомата. Дыхательный автомат (автоматический пускатель) (рис. 13) обеспечивает автоматическое пополнение дыхательного мешка азотно-гелиево-кислородной смесью при погружении или вырав-нивании давления с окружающим в необходимом для дыхания подводника объеме.

Рис. 12. Дыхательный мешок:

1 – трубка вдоха; 2 – соединительная трубка; 3 – дыхательный автомат; 4 – дыхательная трубка; 5 – трубка выдоха; 6 – предохранительный клапан; 7, 8, 9 – штуцеры; 10 – тройник

Внутренняя полость дыхательного автомата изолируется от окружающей среды эластичной мембраной 1, прижимаемой к корпусу защитной крышкой 2 с резьбовым кольцом 3. Газовая смесь через штуцер 6 с фильтром 7 подводится к клапану 5, который прижимается к седлу пружиной 8. Усилие на шток клапана передается рычагами 11 и 12, высота расположения которых регулируется винтом 4 и гайкой 13. Усилие открытия регулируется винтом 9, сжимающим пружину 10. В дыхательный мешок газовая смесь поступает через вырезы в днище корпуса. Дыхательный автомат перепускает газовую смесь при разря-жении в мешке 110…160 мм вод.ст. Предохранительный клапан (рис. 14) обеспечивает сброс избытка газовой смеси из дыхательного мешка аппарата как в процессе его использования, так и при хранении на подводной лодке.

Рис.13. Дыхательный автомат:

1 – мембрана; 2 – крышка; 3 – резьбовое кольцо; 4, 9 – винты; 5 – клапан; 6 – штуцер; 7 – фильтр; 8, 10 – пружины; 11, 12 – рычаги; 13 – гайка

Рис.14.Предохранительный клапан

1 – крышка; 2, 3 – пружины; 4 – шток; 5 – клапан-мембрана; 6 – обратный клапан; 7 – корпус; 8, 9 – гайки

Он устанавливается в нижней части дыхательного мешка и закрепляется накидной гайкой 8. Конструктивно он представляет собой сочетание двух клапанов: основного – клапана-мембраны 5 и обратного резинового клапана 6. При повышении давления в дыхательном мешке мембрана 5, преодолевая усилия пружин 2, 3, отходит от седла и открывает выход избыточной газовой смеси через боковые отверстия в корпусе 7. Дыхание подводника в аппарате (см. рис. 9) осуществляется через клапанную коробку 9, которая присоединяется к ниппелю шлема гидрокомбинезона СГП-К. Необходимый для дыхания состав газов в дыхательном мешке 10 обеспечивается за счет поглощения уг­лекислого газа и выделения кислорода химическим веществом регенеративного патрона 2, подачи кислорода через кислородный переключатель 12, а также подачи азотно-гелиево-кислородной сме­си через легочный автомат 8. Все узлы аппарата ИДА-59М смонтированы на нагруднике 1, с помощью которого аппарат закрепляется на туловище подвод­ника поверх гидрокомбинезона СГП-К. На брасовом ремне 6 наг­рудника закрепляется ремень с карабином 7, который служит для удержания подводника в люке подводной лодки в процессе шлюзования при выходе свободным всплытием через спасательные люки, оснащенные блоком подачи воздуха. Карабин аппарата 15 предназначен для удержания подводника при выходе из подводной лодки на буйрепе около мусинга. Ремень карабина 15 закреплен на поясном ремне 16 аппарата. С помощью штуцера крестовины 4 аппарат ИДА-59М сое­диняется с ДГБ (см. рис. 16). Предварительно со штуцера отвертывается колпачковая гайка.

В комплекте аппарата имеется маска (рис. 15), предназ­начен-ная для использования аппарата ИДА-59М без гидрокомби­незона СГП-К в сухих и частично затопленных отсеках подводной лодки. Маска позволяет дышать в аппарате и обеспечивает изоляцию органов дыхания и глаз от окружающей газовой или водной среды.


Рис. 15. Маска:

1 – лямки; 2 – очки; 3 – переговорное устройство; 4 – угольник; 5 – накидная гайка; 6 – прокладка

С помощью угольника 4 и накидной гайки 5 с прокладкой 6 маска присоединяется к клапанной коробке аппарата. Для крепления и плотного прилежания маски по контуру лица она имеет лямки 1, которые позволяют подогнать маску по размеру головы. Маска выпускается трех размеров:

1 – малый,

2 – средний,

3 – большой.

Дополнительный гелиевый баллон (рис. 16) используется совместно с аппаратом ИДА-59М для выхода подводников с глубин более 100 м при обеспечении силами. Поисково-спасательной службы ВМФ. Баллоны ДГБ поставляются в сборе с редуктором, пускателем, соединительными шлангами и арматурой. Баллон 1 с гелием заключен в чехол 7. В кармане 6 чехла размещен пускатель, соединенный шлангом 5 с тройником 3 ре­дуктора. Шлангом 10 с байонетным замком 9 и накидной гайкой 8

Рис. 16. Дополнительный гелиевый баллон:

1 – баллон; 2 – редуктор; 3 – тройник; 4 – карабин; 5, 10 – шланги; 6 – карман чехла; 7 – чехол; 8 – накидная гайка; 9 – байонетный замок

Баллон ДГБ подсоединяется к крестовине азотно-гелиево-кислород-ного баллона. Редуктор 2 с запорным вентилем ввернут в горловину баллона. Карабином 4 баллон закрепляется к поясному ремню аппара­та. Габаритные размеры ДГБ и его деталей в сборе не превышают 330×160×110 мм, масса баллона 3,2 кг, вместимость 1,3 л, рабочее давление 20 МПа (200 кгс/см2). Редуктор гелиевого баллона по устройству и принципу дей­ствия аналогичен редуктору азотно-гелиево-кислородного бал­лона, но в отличие от него отрегулирован на установочное давление 1…1,2 МПа (10…12 кгс/см2).

Принципиальная схема действия

При вдохе (рис. 17) газовая смесь из дыхательного меш­ка 17 через гофрированную трубку 8 и клапан вдоха 9 посту­пает в органы дыхания. При выходе газовая смесь через клапан выдоха 14 и гофрированную трубку 16 поступает в регенератив­ный патрон 27 с химическим веществом О-3. Очищенная от угле­кислого газа и обогащенная кислородом газовая смесь поступает в дыхательный мешок 17, где смешивается с газами, поступающи­ми из баллонов аппарата и ДГБ через механизмы подачи газовых смесей 13 и 20. Кислородный редуктор 23 и переключатель 20 на глубинах от 0 до 55…65 м обеспечивают непрерывную подачу кислорода в дыхательный мешок 17 из кислородного баллона. Подача кислорода зависит от глубины и режимов работы аппарата «погружение-всплытие». B период повышения давления окружающей среды на глуби­нах от 0 до 20 м клапан 21 переключателя открыт, седло 24 перекрыто мембраной 26, кислород через дюзы Д1, Д2 и Д3 пос­тупает в дыхательный мешок. Подача кислорода определяется тарировкой дюзы Д1 и сос­тавляет 0,3…0,6 л/мин. На глубине 20…24 м давление в полости воздействует на мембрану 19 прогибает ее, преодолевая усилие пружины 18, вследствие чего клапан 21 под воздействи­ем пружины 22 закрывается, подача кислорода осуществляется через дюзы Д1 и Д3 (около 1 л). На глубинах 25…30 м мембрана 26 под воздействием этого давления, преодолевая уси­лие пружины 25, открывает седло 24, кислород из редуктора поступает через отверстие седла 24. Так как проходное сечение отверстия седла 24 намного больше проходного сечения дюз Д2 и Д3, то давление, действующее на мембрану 26, возрастает до значения давления кислорода на выходе из редуктора. Усилие от воздействия давления на поверхность мембраны 26 становится значительно больше усилия пружины 25, и седло 24 остается открытым в процессе дальнейшего погружения и всплытия. При подъеме на поверхность подача кислорода из кислород­ного баллона возобновляется на глубине 55…65 м. Подача кис­лорода осуществляется через дюзу Д3 (около 1 л/мин). По мере подъема подача кислорода увеличивается. На глубине 20…24 м усилие пружины 18 преодолевает газовое давление на мембрану 19, клапан 21 открывается, начинается поступление кислорода в дыхательный мешок через дюзы Д2 и Д3 (3,0…4,4 л/мин). Такая подача кисло­рода остается и после подъема на поверхность. При повышении окружающего давления или при возникновении разрежения в дыхательном мешке 17 мембрана 2 дыхательного автомата 3, прогибаясь, через систему рычагов открывает кла­пан 11 и обеспечивает поступление газовой смеси в дыхатель­ный мешок. Таким образом, при выходе с глубин менее 100 м при компрессии в шлюзовом устройстве дыхатель­ный мешок 17 пополняется 25%-ой азотно-гелиево-кислородной сме­сью, поступающей из АГК-баллона через редуктор, тройник 1 и клапан 11 дыхательного автомата 13. В случае выхода с глубин более 100 м дыхательный аппарат работает совместно с ДГБ. В этом случае в дыхательный мешок 17 подается гелий, по­ступающий из ДГБ через редуктор 5, пускатель 4 и дыха­тельный автомат 13. Так как давление на выходе из редуктора 5 (10…11 гс/см2) больше давления, создаваемого редуктором АГК-баллона (5,3…6,6 кгс/см2), то мембрана 6 под воздействием давления поступаю­щего гелия, преодолевая усилие пружины 7, прогибается и обес­печивает закрытие клапана 3. Подача азотно-гелиево-кислородной смеси к дыхательному автомату 13 прекращается на глубинах 75…90 м, и взамен ее в дыхательный мешок подается гелий.


Рис. 17. Принципиальная схема действия аппарата ИДА-59М:

1 – крестовина; 2 – камера редуктора; 3,11,21 – клапаны; 4 – пускатель ДГБ; 5,23 – редукторы; 6,12,19,26 – мембраны; 7,18,22,25 – пружины; 8 – трубка вдоха; 9 – клапан вдоха; 10 – клапанная коробка; 13 – дыхательный автомат; 14 – клапан выдоха; 15 – предохранительный клапан; 16 – трубка выдоха; 17 – дыхательный мешок; 20 – кислородный переключатель; 24 – седло клапана; 27 – регенеративный патрон

Характеристика регенеративных веществ и газов, применяемых для дыхания в аппарате ИДА-59М

Для регенерации газовой среды в изолирующем дыхательном аппарате ИДА-59М используют гранулированное регенеративное вещество О-3 на основе надперекиси калия К 2 О 4 . Химическая реакция поглощения углекислого газа и влаги из выдыхаемой подводником газовой смеси и насыщения ее кислородом может быть представлена в следующем виде:

К снаряжению регенеративных патронов допускают регенера-тивные вещества, содержащие кислорода не менее 130 л/кг и двуокиси углерода – не более 15 л/кг. В качестве поглотителя двуокиси углерода используется химический поглотитель известковый (ХПИ). Вещество ХПИ используется в основном при отработке личным составом учебных задач в условиях учебно-трениро­вочных станций и комплексов. Процесс поглощения двуокиси углерода может быть представлен в виде:

К использованию допускается поглотитель с содержанием двуокиси углерода не более 20 л/кг. Вещество О-3 является химически активным. Оно бурно реагирует с водой, маслом, спиртом и жидким топливом. Поэтому при работе с веществом О-3, а также при хранении заряженных аппаратов на пл следует соблюдать строжайшие меры предос­торожности во избежание взрывов и пожаров. Для анализа регенеративного вещества О-3 на содержание кислорода и двуокиси углерода и поглотителя ХПИ на содер­жание двуокиси углерода применяется прибор кальциметр. Пробы на анализ гранулированного регенеративного вещест­ва или химического поглотителя отбираются из каждого вновь вскрываемого барабана (емкость для транспортировки и хране­ния вещества). Из трех различных мест барабана отбирают не менее трех проб. Для дыхания в аппарате ИДА-59М используется меди­цинский газообразный кислород (99% О2 и 1% N2), ГОСТ 5583−78. Пользоваться техническим кислородом для дыхания водолазов запрещается. Кислород получают с завода и в транспортных бал­лонах доставляют на учебно-тренировочные станции и комплек­сы, где им набивают кислородные баллоны аппаратов ИДА-59М. Для набивки АГК-баллонов используют 25% азотно-гелиево-кислородную смесь, которая содержит 25% кислорода, 15% гелия и 60% азота. При этом максимальное парциальное давление кислорода, приме­няемое при спасении подводников из аварийной подводной лодки, несколько превышает установленное для водолаз-ных спусков (1,3…1,8 ата). Поэтому сроки пребывания на глубинах 80…100 м при дыхании 25% азотно-гелиево-кислородной смесью для предупреждения кислородного отравления ограничены 15…20 мин. Использование 25% АГК-смеси благодаря повышенному пар­циальному давлению кислорода обеспечивает некоторое увеличение сроков пребывания под водой под наибольшим давлением при выходе с глубин до 100 м включительно без опасности возникновения у под­водников декомпрессионной болезни. В то же время выход лично­го состава из аварийной подводной лодки на этой смеси методом подъема по буйрепу позволяет применить более короткие ре­жимы. При выходе с глубины более 100 м эта смесь для дыхания непригодна из-за опасности кислородного отравления и должна разбавляться в дыхательном мешке аппарата чистым гелием из ДГБ. Проведение анализов воздуха на содержание вредных веществ, проверка состава газовых смесей по кислороду произ­водится через каждые три месяца эксплуатации компрессорных установок, перед началом эксплуатации вновь установленных или отремонтированных компрессоров, воздушных магистралей и баллонов. Заключение о пригодности регенеративных веществ, химпогло-тителя, газовых смесей и воздуха для дыхания водолазов не­зависимо от места выполнения анализов дает врач-спецфизио­лог (врач) корабля (организации ВМФ) или лицо, осуществляющее медицинское обеспечение водолазных спусков.

Подводный дыхательный аппарат относится к области водолазной техники, а именно к подводным дыхательным аппаратам, и может использоваться при проведении водолазных спусков, подводно-спасательных работ, подводных технических работ. Задачей полезной модели является расширение возможностей использования подводного дыхательного аппарата открытого цикла дыхания, повышение безопасности водолазных спусков, упрощение переоборудования подводного дыхательного аппарата и, как следствие, его удешевление. Техническим результатом от использования полезной модели является мобильность размещения поглотительного патрона и баллонов в конструкции подводного дыхательного аппарата открытого цикла.


Полезная модель относится к области водолазной техники, а именно к подводным дыхательным аппаратам, и может использоваться при проведении водолазных спусков, подводно-спасательных работ, подводных технических работ.

Известен подводный дыхательный аппарат открытого цикла (Памятка подводного пловца. Ресурс «Библиотека Черноморского пловца» http://divinginfo.narod.ru/library/Rukovodstvo_dlia_plovtsov_kmas.doc), включающий в свой состав баллон с запорным устройством, редуктор, понижающий давление газовой смеси в баллоне; основные элементы конструкции данного аппарата имеют модульный характер, как следствие, могут размещаться в различных местоположениях, необходимых для конкретной задачи проведения подводных спусков, а именно могут быть размещены на спине, на боку или на груди водолаза, а также могут быть присоединены к основному дыхательному аппарату в качестве резерва. Данный аппарат принят за наиболее близкий аналог заявляемой полезной модели. Недостатком аппарата является то, что он имеет небольшое время защитного действия, обусловленное открытым циклом дыхания.

Известен подводный дыхательный аппарат замкнутого цикла дыхания APDiving Vision (Inspiration. Closed Circuit Rebreather. User Instruction Manual. http://www.apdiving.com/ , http://www.smrebreathers.ru/rebreathers/review/Inspiration_Evolution.htm), содержащий баллоны с запорными устройствами, редуктор, подвесную систему, поглотительный патрон, корпус, клапанную коробку, дыхательные мешки, емкость компенсации плавучести, запасной легочный автомат, выносной манометр. К преимуществам данного аппарата относятся: высокая физиологичность - водолаз, дыша из данного аппарата влажной, теплой, насыщенной кислородом газовой смесью, значительно меньше устает, мерзнет и обезвоживается, чем водолаз в аналогичных условиях, дышащий из аппарата открытого цикла холодным сухим воздухом; большее время защитного действия при сопоставимых с подводными аппаратами открытого цикла дыхания размерах и массе; снижение затрат на проведение спусков за счет экономии дорогих газовых смесей; увеличение бездекомпрессионного предела; обеспечение возможности проведения глубоководных автономных водолазных спусков; обеспечение высокой скрытности погружения, необходимой для выполнения военных задач.

Недостатком данного аппарата является расположение поглотительного патрона и баллонов путем закрепления в жестком корпусе, задаваемое при изготовлении аппарата. Жесткий корпус делает невозможным применение баллонов, имеющих размеры, большие, чем используемые в стандартной комплектации аппарата. Таким образом, конструкция аппарата не может быть изменена пользователем для обеспечения конкретных условий проведения водолазного спуска.

Анализ известных запатентованных решений выявил стремление разработчика к повышению автономности аппарата (патент на изобретение № SU 1722222 от 23.07.1986 г.), улучшению характеристик регенеративных веществ в водолазном дыхательном аппарате (патент на изобретение № RU 2225322 от 30.08.2001 г.), к повышению безопасности использования аппарата замкнутого цикла за счет количества входящих в его состав регенеративных патронов (патент № на изобретение RU 2302973 от 31.12.2002 г.), к улучшению управления формированием дыхательной смеси, поступающей в аппарат (патент на изобретение № RU 2236983 от 11.04.2002 г.), упрощению процедуры переснаряжения регенеративного продукта (патент на изобретение № RU 2254263 от 07.05.2004 г.).

Задачей полезной модели является расширение возможностей использования подводного дыхательного аппарата открытого цикла дыхания, повышение безопасности водолазных спусков, упрощение переоборудования подводного дыхательного аппарата и, как следствие, его удешевление.

Техническим результатом от использования полезной модели является мобильность размещения поглотительного патрона и баллонов в конструкции подводного дыхательного аппарата открытого цикла.

Также техническим результатом является обеспечение механической и тепловой защиты поглотительного патрона, используемого в конструкции подводного дыхательного аппарата.

Задача решается с помощью конструкции подводного дыхательного аппарата открытого цикла дыхания, содержащего баллон с запорным устройством, редуктор, отличающегося тем, что содержит поглотительный патрон, по меньшей мере один, дыхательный мешок, клапанную коробку, соединительные шланги низкого давления.

Также задача решается тем, что устройство содержит чехол для поглотительного патрона.

Также задача решается с помощью размещения баллона на чехле поглотительного патрона.

Также задача решается тем, что устройство содержит ремни крепления баллонов, стропу, хомуты, притягивающие стропу к корпусу патрона, лямки на дыхательных мешках.

Также задача решается тем, что устройство содержит легочный автомат.

Также задача решается тем, что устройство содержит подвесную систему.

Также задача решается с помощью размещения поглотительного патрона на подвесной системе.

Также задача решается тем, что устройство содержит манометр.

Также задача решается тем, что устройство содержит емкость компенсатора плавучести.

Также задача решается с помощью размещения поглотительного патрона на месте расположения баллона.

Также задача решается с помощью размещения поглотительного патрона на баллоне.

Также задача решается с помощью размещения поглотительного патрона сбоку от баллона.

Предлагаемая полезная модель поясняется следующими чертежами:

Фиг.1 Общая схема подводного дыхательного аппарата;

Фиг.2 Подводный дыхательный аппарат с использованием чехла;

Фиг.3 Подводный дыхательный аппарат с использованием стропы и хомутов.

Подводный дыхательный аппарат состоит из следующих узлов и деталей:

Подвесной системы 1, предназначенной для монтажа на ней узлов аппарата и его крепления на теле водолаза;

Клапанной коробки 2 с гофрированными шлангами вдоха и выдоха - обеспечивающей возможность дыхания газовой смесью из аппарата, а также атмосферным воздухом при нахождении на поверхности;

Комплекта дыхательных мешков: вдоха 3 - для снабжения необходимым объемом газовой смеси на вдохе используемой для дыхания водолаза, выдоха 4 - для сбора выдыхаемого воздуха;

Баллона с запорным устройством 5 или двух баллонов с запорными устройствами, предназначенных для содержания запаса газовых смесей;

Редуктора 6 - для понижения давления дыхательной смеси, поступающей из баллона;

Компенсатора плавучести, «крыла» 7, предназначенного для компенсации отрицательной плавучести водолаза, как в момент погружения, так и в момент пребывания на поверхности;

Легочного автомата со шлангом 8 - для дыхания водолаза непосредственно от баллона аппарата в аварийной ситуации;

Выносного манометра 9 - для визуального контроля за давлением газовой смеси в баллоне;

Индикатора кислорода 10 - для визуального контроля парциального давления кислорода;

Поглотительного патрона 11 - для очистки выдыхаемого газа от содержащегося в нем СO2;

Шлангов 12 вдоха и выдоха патрона;

Т-коннекторов 13;

Шланга поддува инфлятора 14;

Шланга поддува мешка вдоха 15;

Шланга поддува мешка выдоха 16;

Шланга подачи газа от редуктора к коллектору 17;

Шланга подачи дыхательной смеси в патрон 18;

Ремней 19;

Чехла 20 (для исполнений с чехлом).

Для расположения поглотительного патрона 11 на спине водолаза его закрепляют на компенсаторе плавучести 7, штатные ремни компенсатора продеваются в петли на боковой поверхности чехла 20 таким образом, чтобы патрон оказался притянутым аналогично баллону аппарата с открытой схемой дыхания. В отличие от последнего, благодаря наличию чехла нет необходимости притягивать патрон с усилием, аналогичным усилию, которое требуется для надежного крепления баллона - благодаря наличию петель поглотительный патрон оказывается надежно закреплен.

Для фиксации баллона малого объема 5 к поглотительному патрону 11, закрепленному на компенсаторе плавучести, в петли чехла поглотительного патрона продеваются ремни для крепления баллонов, которые охватывают баллон малого объема таким образом, чтобы поглотительный патрон оставался снаружи петли ремня.

Для закрепления поглотительного патрона на баллоне с дыхательной смесью, расположенном либо на компенсаторе плавучести на спине водолаза, либо на боковой подвеске, используются ремни того же типа, что и для закрепления баллона на компенсаторе плавучести. Для этого ремни продеваются через петли чехла поглотительного патрона так, что бы они охватывали баллон, к которому будет закреплен патрон, а сам патрон оставался снаружи петли из ремня.

Для непосредственного закрепления поглотительного патрона на боковой подвеске, к петлям чехла при помощи веревок привязываются карабины, которые крепятся к узлам крепления компенсатора плавучести.

Чехол поглотительного патрона состоит из матерчатой сумки, размеры которой точно соответствуют размерам поглотительного патрона и элементов, обеспечивающих его стыковку с другими элементами снаряжения. Горловина сумки, через которую патрон вставляется внутрь, имеет приспособление для стягивания, состоящие из веревки и фиксатора. Для надежной фиксации патрона внутри чехла горловина чехла имеет также стропы с замками.

Для крепления к другим элементам снаряжения чехол поглотительного патрона имеет петли из стропы на боковой и нижней торцевой поверхности (дне «сумки»).

Для перевода аппарата с открытого цикла на замкнутый либо полузамкнутый циклы дыхания, без применения в конструкции аппарата специального чехла, на поглотительном патроне 11 располагаются три стальных хомута, притягивающих стропу к корпусу патрона, таким образом, что бы она образовывала две петли, в которые могут быть продеты ремни крепления баллонов. На чехлах дыхательных мешков 3 имеется несколько пар лямок с креплением для обхвата наплечных лямок подвесной системы аппарата открытого цикла. Стропа с пряжками-фастексами обеспечивает плотную фиксацию дыхательных мешков на теле водолаза.

Поглотительный патрон при этом крепится к аппарату двумя способами:

Установкой патрона сбоку от заспинного баллона. Это обеспечивается путем продевания баллонных ремней подвесной системы в петли на поглотительном патроне;

Установкой патрона на место заспинного баллона. При этом баллонные ремни также продеваются в петли, но при этом ремни охватывают патрон, аналогично тому, как это делается при установке баллона.

Предлагаемое в качестве полезной модели техническое решение, используемое в конструкции подводного дыхательного аппарата, позволяет размещать поглотительный патрон аппарата в различных местах снаряжения, а именно:

На спине водолаза, путем фиксации на компенсаторе плавучести;

На спине водолаза или на боковой подвеске, при фиксации на баллоне с дыхательной смесью;

На боку водолаза, путем крепления непосредственно за крепежные узлы подвесной системы компенсатора плавучести.

Кроме того, при использовании легких тканевых материалов решение позволяет крепить баллоны малого объема непосредственно к чехлу поглотительного патрона, достигается уменьшение размеров и веса соединительного узла аппарата, обеспечивается механическая и тепловая защита поглотительного патрона.

Возможность перевода аппаратов открытого цикла на замкнутый и полузамкнутый цикл увеличивает время защитного действия аппарата, при этом для выполнения простых задач имеется возможность перевести аппарат обратно на работу по открытому циклу, сняв модуль расширения.

Изготовлены и переданы в эксплуатацию дыхательные аппараты производства ОАО «КАМПО», в которых реализуется заявляемое в качестве полезной модели техническое решение. Аппарат может быть изготовлен в условиях серийного машиностроительного производства с использованием оборудования общего применения без дополнительных капитальных вложений.


Формула полезной модели

1. Подводный дыхательный аппарат открытого цикла дыхания, содержащий баллон с запорным устройством, редуктор, отличающийся тем, что содержит поглотительный патрон, по меньшей мере, один дыхательный мешок, клапанную коробку, соединительные шланги низкого давления.

2. Устройство по п.1, отличающееся тем, что содержит чехол для поглотительного патрона.

3. Устройство по п.2, отличающееся тем, что баллон размещен на чехле поглотительного патрона.

4. Устройство по п.1, отличающееся тем, что содержит ремни крепления баллонов, стропу, хомуты, притягивающие стропу к корпусу патрона, лямки на дыхательных мешках.

5. Устройство по п.1, отличающееся тем, что содержит емкость компенсатора плавучести.

6. Устройство по п.1, отличающееся тем, что содержит легочный автомат.

7. Устройство по п.1, отличающееся тем, что содержит подвесную систему.

8. Устройство по п.7, отличающееся тем, что поглотительный патрон размещен на подвесной системе.

9. Устройство по п.1, отличающееся тем, что содержит манометр.

10. Устройство по п.1, отличающееся тем, что поглотительный патрон размещен на баллоне.

11. Устройство по п.1, отличающееся тем, что поглотительный патрон размещен на месте расположения баллона.

12. Устройство по п.1, отличающееся тем, что поглотительный патрон размещен сбоку от баллона.

Кислородный ребризер замкнутого типа

Это родоначальник ребризеров вообще. Первый такой аппарат был создан и применен британским изобретателем Генри Флюссом в середине XIX века при работе в затопленной шахте. Кислородный ребризер замкнутого цикла имеет все основные детали, характерные для ребризера любого типа: дыхательный мешок, канистра с химпоглотителем, дыхательные шланги с клапанной коробкой, байпасный клапан (ручной или автоматический), травящий клапан и баллон с редуктором высокого давления. Принцип работы следующий: кислород из дыхательного мешка поступает через невозвратный клапан в легкие водолаза, оттуда, через другой невозвратный клапан кислород и образовавшийся при дыхании углекислый газ попадает в канистру химпоглотителя, где углекислый газ связывается каустической содой , а оставшийся кислород возвращается в дыхательный мешок. Кислород, потребленный водолазом, подается в дыхательный мешок через калиброванную дюзу со скоростью примерно 1 - 1,5 литра в минуту или же добавляется водолазом с помощью ручного клапана. При погружении обжим дыхательного мешка компенсируется либо за счет срабатывания автоматического байпасного клапана, либо с помощью ручного клапана, управляемого самим водолазом. Надо заметить, что, несмотря на название «замкнутый», любой ребризер замкнутого цикла выпускает через травящий клапан пузырьки дыхательного газа во время всплытия. Чтобы избавиться от пузырей, на травящие клапаны устанавливают колпачки из мелкой сетки или поролона. Это простое устройство весьма эффективно и снижает диаметр пузырьков до 0,5 мм. Такие пузырьки полностью растворяются в воде уже через полметра и не демаскируют водолаза на поверхности.

Ограничения, присущие кислородным ребризерам замкнутого цикла, обусловлены в первую очередь тем, что в данных аппаратах применяется чистый кислород, парциальное давление которого и является ограничивающим фактором по глубине погружения. Так в спортивных (рекреационных и технических) системах обучения этот предел составляет 1,6 ата, что ограничивает глубину погружения 6-ю метрами в теплой воде при минимальной физической нагрузке. В военно-морском флоте ФРГ такой предел составляет 8 метров, а в ВМФ СССР - 22 метра.

Химический ребризер замкнутого цикла с предварительно приготовленной смесью

Такая модель в мире только одна и называется она ИДА-71 (Russian IDA71 military and naval rebreather , его дальнейшее развитие называется ИДА-85, но про этот ребризер мало чего известно). Сделано в СССР . Детали этого аппарата такие же, как и у кислородного ребризера замкнутого цикла, но с двумя отличиями. Во-первых есть автомат промывки. Это механическое устройство, которое при достижении глубины 18-20 метров (точнее его отрегулировать нельзя) прекращает подачу чистого кислорода в дыхательный мешок и начинает подачу смеси, состоящей из 40 % кислорода и 60 % азота (то есть Нитрокс). Вторая (и главная) особенность состоит в наличии у ИДА-71 двух канистр химпоглотителя. В первую заряжается обычный химпоглотитель на основе каустической соды, а во вторую - вещество О3 (о-три), созданное на основе пероксида натрия . Вещество О3 способно не только поглощать углекислый газ, но и выделять кислород. Принцип работы ИДА-71 состоит в том, что потребление кислорода водолазом компенсируется не только за счет подачи свежей дыхательной смеси, но и за счет выделения кислорода веществом О3. Таким образом, не возникает (по крайней мере теоретически) избытка дыхательной смеси и аппарат не выпускает пузырьков газа, получая право называться «замкнутым».

Поскольку скорость выделения кислорода веществом О3 непостоянна и зависит от множества неподдающихся учету факторов, таких, как, например, температура воды, то невозможно точно определить содержание кислорода в дыхательном мешке ребризера, но эта задача и не ставится. Просто водолаз должен скрытно выполнить боевое задание. Ограничения для данного аппарата заложены в самой его конструкции и кроме непредсказуемости содержания кислорода в дыхательном газе обусловлены еще и применением крайне опасного вещества О3. Если на вещество попадет вода - начинается бурная реакция с выделением кислорода, что, при протечке аппарата означет смерть от кислородного отравления на глубине. Ни одна из стран не запустила в серию подобный аппарат и не экспериментировала с ним в силу его крайней непредсказуемости и опасности.

Для планирования погружений используются декомпрессионные таблицы, рассчитанные под данный аппарат из предположения, что парциальное давление кислорода 3,2 ата вполне безопасно.

Ребризер замкнутого цикла с ручной подачей кислорода

Эта система называется ещё K.I.S.S. (Keep It Simple Stupid) и изобретена канадцем Гордоном Смитом. Это ребризер замкнутого цикла с приготовлением смеси «на лету» (selfmixer), но в максимально простом исполнении. Принцип работы аппарата состоит в том, что используются 2 газа. Первый, называемый дилюэнтом, подается в дыхательный мешок аппарата через автоматический байпасный клапан для компенсации обжима дыхательного мешка при погружении. Второй газ (кислород) подается в дыхательный мешок через калиброванную дюзу с постоянной скоростью, меньшей, однако, чем темп потребления кислорода водолазом (примерно 0,8-1,0 литров в минуту). При погружении водолаз обязан сам контролировать парциальное давление кислорода в дыхательном мешке по показаниям электролитических датчиков парциального давления кислорода и добавлять недостающий кислород с помощью ручного клапана. На практике это выглядит так: перед погружением водолаз добавляет в дыхательный мешок какое-то количество кислорода, устанавливая по датчикам требуемое парциальное давление кислорода (в пределах 0,4-0,7 ата). В процессе погружения для компенсации по глубине в дыхательный мешок автоматически добавляется газ-дилюэнт, снижая концентрацию кислорода в мешке, но парциальное давление кислорода остается относительно стабильным из-за роста давления водяного столба. Достигнув запланированной глубины, водолаз с помощью ручного клапана устанавливает какое-либо парциальное давление кислорода (обычно 1,3) работает на грунте, раз в 10-15 минут контролируя показания датчиков парциального давления кислорода и добавляя при необходимости кислород для поддержания необходимого парциального давления. Обычно за 10-15 минут парциальное давление кислорода снижается на 0,2-0,5 ата в зависимости от физической нагрузки.

Теоретически в качестве газа-дилюэнта может использоваться не только воздух, но и trimix, что позволяет погружаться с таким аппаратом на весьма приличные глубины, однако относительное непостоянство парциального давления кислорода в дыхательном контуре затрудняет точный расчет декомпрессии. Обычно с такими аппаратами погружаются не глубже 40 метров, хотя известны случаи успешного использования в качестве газа-дилюэнта trimix и погружений на глубины 50-70 метров. Самым глубоким погружением с аппаратом подобного типа можно считать выходку Матиаса Пфайзера, нырнувшего в Хургаде на 160 (сто шестьдесят) метров. Кроме датчиков парциального давления кислорода Матиас использовал еще и компьютер VR-3 с кислородным датчиком, который отслеживал парциальное давление кислорода в смеси и рассчитывал декомпрессию с учетом всех изменений дыхательного газа. В общем, все было достаточно безопасно, но повторять этот подвиг Матиас никому не рекомендовал. И правильно сделал.

Существует великое множество переделок коммерческих, военных и спортивных ребризеров под систему K.I.S.S., но всё это, разумеется неофициально и под личную ответственность переделавшего и использующего их водолаза.

Ребризер замкнутого цикла с электронным управлением

Inspiration - ребризер с электронным управлением

Собственно настоящий ребризер замкнутого цикла (electronicaly controled selfmixer). Первый в истории такой аппарат был изобретен Вальтером Старком и назывался Electrolung. Принцип функционирования состоит в том, что газ-дилюэнт (воздух или Trimix или HeliOx) подается ручным или автоматическим байпасным клапаном для компенсации обжима дыхательного мешка при погружении, а кислород подается с помощью электромагнитного клапана, управляемого микропроцессором. Микропроцессор опрашивает 3 кислородных датчика, сравнивает их показания и усредняя два ближайших, выдает сигнал на соленоидный клапан. Показания третьего датчика, отличающиеся от двух других сильнее всего - игнорируются. Обычно соленоидный клапан срабатывает раз в 3-6 секунд в зависимости от потребления водолазом кислорода.

Погружение выглядит примерно так: водолаз вводит в микропроцессор два значения парциального давления кислорода, которые электроника будет поддерживать на разных этапах погружения. Обычно это 0,7 ата для выхода с поверхности на рабочую глубину и 1,3 ата для нахождения на глубине, прохождения декомпрессии и всплытия до 3 метров. Переключение осуществляется тумблером на консоли ребризера. В процессе погружения водолаз обязан контролировать работу микропроцессора для выявления возможных проблем с электроникой и датчиками.

Конструктивно ребризеры замкнутого цикла с электронным управлением практически не имеют ограничений по глубине и реальная глубина, на которой возможно их использование, обусловлена в основном погрешностью кислородных датчиков и прочностью корпуса микропроцессора. Обычно предельная глубина составляет 150-200 метров. Других ограничений электронные ребризеры замкнутого цикла не имеют. Основным недостатком этих ребризеров, существенно ограничивающим их распространение является высокая цена самого аппарата и расходных материалов. Важно помнить, что обычные компьютеры и декомпрессионные таблицы не подходят для погружений с электронными ребризерами, поскольку парциальное давление кислорода остается неизменным на протяжении практически всего погружения. С ребризерами такого типа должны использоваться либо специальные компьютеры (VR-3, HS Explorer) или же погружение должно рассчитываться предварительно с помощью таких программ, как Z-Plan или V-Planer. Обе программы бесплатные и рекомендованы для применения производителями и создателями всех электронных ребризеров.

Ребризеры полузамкнутого цикла

Ребризер полузамкнутого цикла с активной подачей

Упрощённая схема ребризера полузамкнутого цикла

Это наиболее распространенный в спортивном дайвинге тип ребризера. Принцип его действия в том, что в дыхательный мешок с постоянной скоростью подается через калиброванную дюзу дыхательная смесь EANx Nitrox . Скорость подачи зависит только от концентрации кислорода в смеси, но не зависит от глубины погружения и физической нагрузки. Таким образом, концентрация кислорода в дыхательном контуре остается постоянной при постоянной физической нагрузке. Очевидно, что при таком способе подачи дыхательного газа возникают его излишки, которые удаляются в воду через травящий клапан. Вследствие этого ребризер полузамкнутого цикла выпускает несколько пузырьков дыхательной смеси не только при всплытии, но и при каждом выдохе водолаза. Стравливается примерно 1/5 часть выдыхаемого газа. Для повышения скрытности на травящие клапаны могут устанавливаться колпачки-дефлекторы, аналогичные применяемым в кислородных ребризерах замкнутого цикла.

В зависимости от концентрации кислорода в дыхательной смеси EANx (Nitrox) может варьироваться в пределах от 7 до 17 литров в минуту, таким образом, время нахождения на глубине при использовании ребризера полузамкнутого цикла зависит от объема баллона с дыхательным газом. Глубина погружения ограничивается парциальным давлением кислорода в дыхательном мешке (не должно превышать 1,6 ата) и установочным давлением редуктора. Дело в том, что истечение газа через калиброванную дюзу имеет сверхзвуковую скорость, что позволяет сохранять подачу неизменной до тех пор, пока установочное давление редуктора превышает давление окружающей среды в два или более раз.

Ребризер полузамкнутого цикла с пассивной подачей

Весьма малораспространенный тип ребризера, представленный в настоящее время только аппаратом Halcyon RB-80, который имеет сертификат безопасности для США и Европы . Принцип работы аппарата состоит в том, что от 1/7 до 1/5 выдыхаемого газа принудительно стравливается в воду, а объем дыхательного мешка заведомо меньше объема легких водолаза. За счет этого на каждый вдох в дыхательный контур подается свежая порция дыхательного газа. Такой принцип позволяет использовать в качестве дыхательной смеси любые газы, кроме воздуха и весьма точно поддерживать концентрацию кислорода в дыхательном контуре вне зависимости от физической нагрузки и глубины. Поскольку подача дыхательного газа осуществляется только на вдох, а не постоянно, как в случае с ребризерами с активной подачей, то ребризер полузамкнутого цикла с активной подачей ограничен по глубине только парциальным давлением кислорода в дыхательном контуре. Существенным отрицательным моментом в конструкции ребризеров полузамкнутого цикла с пассивной подачей является то, что автоматика приводится в действие за счет дыхательных движений водолаза. Из аппаратов, использующих подобный принцип известны французский ребризер Interspiro и немецкий СoRa. Первый не выпускается с середины 60-х годов прошлого века, а второй существует в единичных экземплярах, хотя и является относительно недавней разработкой.

Механический селфмиксер

Весьма редкая конструкция ребризера полузамкнутого цикла. Первый такой аппарат был создан и испытан Draeger в 1914 году. Принцип работы следующий: имеются 2 газа (кислород и дилюэнт), которые подаются через калиброванные дюзы в дыхательный мешок, как в ребризере полузамкнутого цикла с активной подачей. Причем, подача кислорода осуществляется с постоянной объемной скоростью, как в замкнутом ребризере с ручной подачей, а дилюэнт поступает через дюзу с дозвуковой скоростью истечения, причем количество подаваемого дилюэнта увеличивается с увеличением глубины. Компенсация обжима дыхательного мешка осуществляется подачей дилюэнта через автоматический байпасный клапан, а избытки дыхательной смеси стравливаются в воду так же, как в случае с ребризером полузамкнутого цикла с активной подачей. Таким образом, только за счет изменения давления воды в процессе погружения происходит изменение параметров дыхательной смеси, причем в сторону уменьшения концентрации кислорода при увеличении глубины. Механическим селфмиксерам свойственно изменение концентрации кислорода в дыхательном мешке при изменении физической нагрузки, и это прямое следствие того, что их принцип действия очень схож с принципом, по которому построены полузамкнутые ребризеры с активной подачей.

Ограничения по глубине для механического селфмиксера такие же, как для ребризера полузамкнутого цикла с активной подачей с тем исключением, что только установочное давление кислородного редуктора должно превышать давление окружающей среды в 2 и более раз. По времени же селфмиксер в основном ограничен объемом газа-дилюэнта, скорость подачи которого увеличивается с глубиной. В качестве газа-дилюэнта могут использоваться воздух, Trimix и HeliOx .

Литература

  • Андрей Яшин. Обзор ребризеров. (Проверено 7 октября 2007) . Разрешение об использовании статьи находится на странице обсуждения.