Главная · Электробезопасность · Средства и методы измерения углов. Методы измерения углов Методы и средства контроля и измерения углов

Средства и методы измерения углов. Методы измерения углов Методы и средства контроля и измерения углов

Существуют следующие методы измерений и контроля углов и конусов:


- метод сравнения с жесткими контрольными инструментами - угловыми мерами, угольниками, конусными калибрами и шаблонами;


- абсолютный гониометрический метод , основанный на использовании приборов с угломерной шкалой (нониусные, индикаторные и оптические угломеры);


- косвенный тригонометрический метод , основанный на определении линейных размеров, связанных с измеряемым углом тригонометрической функцией (синусные линейки, конусомеры).

Таблица 2.14. Средства измерений и контроля углов и конусов

Название

Точность измерений

Пределы измерений

Назначение

Синусная линейка (ГОСТ 4046 - 80)

±1,5" для угла 4°

Расстояние между осями 100... 150 мм. Измерение наружных углов 0...45°

Измерение углов калибров, линеек и точных деталей

Линейка поверочная (ГОСТ 8026-92)

Контроль отклонения деталей от плоскостности, прямолинейности, при разметке ИТ.Д.

Уровни (ГОСТ 9392-89, ГОСТ 11196-74)

0,02...0,2 мм/м

Цена деления 0,01...0,15 мм/м. Рабочая длина 100...250 мм

Измерение малых угловых отклонений от горизонтального и вертикального положения приборов, устройств, элементов конструкций и т. д.

Мера угловая призматическая (плитка) (ГОСТ 2875-88)

Тип I: 1"... 9° Тип II: 10...75°50"

Проверка угломерных средств измерений, точной разметки, ! точного измерения углов

Угломер с нониусом типов УН и УМ (ГОСТ 5378-88)

0... 180° (наружных углов),

40... 180° (внутренних углов)

Тип УН для измерения наружных и внутренних углов, тип УМ - для наружных

Угольники поверочные 90 (ГОСТ 3749-77)

Проверка перпендикулярно сти

Краткая характеристика средств измерений и контроля углов и конусов представлена в табл. 2.14. Рассмотрим некоторые из них.


Угловые меры и угольники .


Меры угловые призматические предназначены для передачи единицы плоского утла от эталонов к изделию. Они чаще всего применяются при лекальных работах, а также для поверки и калибровки средств измерений и контроля. Угловые меры (рис. 2.51) могут быть однозначными и многозначными, они представляют собой геометрическую фигуру в виде прямой призмы с доведенными поверхностями, являющимися сторонами рабочего утла.


В соответствии с ГОСТ 2875 - 88 призматические угловые меры изготавливают пяти типов: I, II, III, IV, V с рабочими углами α, β, γ, δ.


Плитки типа I имеют следующие номинальные размеры угла а: от 1 до 29" с градацией через 2" и от 1 по 9° с градацией через Г. Плитки типа II имеют следующие номинальные размеры угла α: от 10 до 75°50" с градацией значений угла 15", Т, 10", 1°, 15°10". Соответствующим ГОСТом установлены номинальные размеры рабочих углов α, β, γ, δ для плиток типа III, призм типа IV и призм типа V.


По точности изготовления различают угловые меры трех классов: 0, 1,2. Допускаемые отклонения рабочих углов, а также допускаемые отклонения от плоскостности и расположения измерительных поверхностей регламентируются в зависимости от типа мер и класса точности. Так, допускаемые отклонения рабочих углов находятся в пределах от +3 до +5" для мер 0-го класса и в пределах ±30" - для мер 2-го класса. Допускаемые отклонения от плоскостности установлены в пределах от 0,10 до 0,30 мкм.


Угловые меры комплектуются в наборы и могут поставляться в виде отдельных мер всех классов.


Рабочие поверхности угловых мер обладают свойством притираемости, т. е. из них могут создаваться блоки. С этой целью, а также для получения внутренних углов предусмотрены специальные принадлежности и лекальные линейки, которые комплектуются в набор принадлежностей. При составлении блоков угловых мер необходимо соблюдать те же правила, что и при составлении блоков из плоскопараллельных концевых мер длины (см. подразд. 2.2.1).


Это угловая мера с рабочим углом 90°. При контроле с помощью угольников оценивают величину просвета между угольником и контролируемой деталью. Просвет определяют на глаз или сравнением с просветом, созданным при помощи концевых мер длины и лекальной линейкой, а также набором щупов.



Рис. 2.51.


В соответствии с ГОСТ 3749 - 77 угольники различаются: по конструктивным признакам - шесть типов (рис. 2.52), по точности- три класса (0, 1, 2). Лекальные угольники (типы УЛ, УЛП, УЛШ, УЛЦ) изготавливают закаленными классов 0 и 1 и применяют для лекальных и инструментальны работ (рис. 2.52, а, б). Слесарные угольники типов УП и УШ (рис. 2.52, в, г) применяют для нормальных работ в машиностроении и приборостроении.





Рис. 2.52. :


а и б - лекальные угольники; в и г - слесарные угольники


Допускаемые отклонения угольников установлены в зависимости от их класса и высоты Н. Так, для угольника 1-го класса с высотой 160 мм отклонение от перпендикулярности измерительных поверхностей к опорам не должно превышать 7 мкм, отклонение от плосткостности и прямолинейности измерительных поверхностей должно находиться в пределах 3 мкм. Для угольника с высотой 400 мм эти значения составляют соответственно 12 и 5 мкм, а для аналогичных угольников 2-го класса 30 и 10 мкм.



Рис. 2.53. :


а и б - угломеры типа УН; в - порядок отсчета по нониусу; гид- угломеры типа УМ; 1 - полудиск; 2 - ось; 3 - винт зажима угольника; 4 - добавочный угольник; 5 - подвижная линейка; 6 - неподвижная линейка; 7 и 8 - устройства для микрометрической подачи; 9 - стопорный винт; 10 - нониус



Рис. 2.54. :


а - тип I; б - тип II; в - тип III: 7 - стол; 2 - роликовые опоры; 3 - боковые планки; 4 - резьбовые отверстия; 5 - передняя планка


Угломерные приборы .


Эти приборы основаны на прямом измерении углов с помощью угломерной шкалы. Наиболее известными средствами измерений из этого ряда являются утломеры с нониусом, оптические делительные головки (см. подразд. 2.2.4), оптические утломеры, уровни, гониометры и др.


(ГОСТ 5378 - 88) предназначены для измерения угловых размеров и разметки деталей. Угломеры выпускаются двух типов. Угломеры типа УН (рис. 2.53, а, б) предназначены для измерения наружных углов от 0 до 180°, внутренних углов от 40 до 180° и имеют величину отсчета по нониусу 2 и 5". Угломер состоит из следующих основных деталей: полудиска (сектора) 1, неподвижной линейки 6, подвижной линейки 5, зажимного винта угольника 3, нониуса 10, стопорного винта 9, устройств для микрометрической подачи 7 и 8, добавочного угольника 4, винта зажима добавочного угольника 3. Для измерения углов от нуля до 90° на неподвижную линейку 6 устанавливают добавочный угольник 4. Измерение углов от 90 до 180° производится без добавочного угольника 4. Порядок отсчета на угловом нониусе угломера аналогичен отсчету на линейном нониусе штангенциркуля (рис. 2.53, в).


Угломеры типа УМ предназначены для измерения наружных углов от 0 до 180° и имеют величину отсчета по нониусу 2 и 5" (рис. 2.53, г) и 15" (рис. 2.53, д). Предел допускаемой погрешности угломера равен величине отсчета по нониусу.





Рис. 2.55. :


1 - измеряемый конус; 2 - индикатор; 3- стол; 4 - блок концевых мер длины; 5 - поверочная плита

Для косвенных измерений углов при контрольно-измерительных работах, а также в процессе механической обработки применяют синусные линейки. Линейки выпускают трех типов:


Тип I (рис. 2.54, а) без опорной плиты с одним наклоном;


Тип II (рис. 2.54, б) с опорной плитой с одним наклоном;


Тип III (рис. 2.54, в) с двумя опорными плитами с двойным наклоном.


Синусная линейка типа I представляет собой стол 1, установленный на двух роликовых опорах 2. Боковые планки 3 и передняя планка 5 служат упорами для деталей, которые прикрепляются к поверхности стола прижимами с помощью резьбовых отверстий 4.


Синусные линейки выпускаются классов точности 1 и 2. Расстояние L между осями роликов может составлять 100, 200, 300 и 500 мм.


Измерение углов конусов на синусной линейке представлено на рис. 2.55. Стол 3, на котором закреплен измеряемый конус 1, устанавливают на требуемый номинальный угол а к плоскости поверочной плиты 5 с помощью блока концевых мер длины 4. Размер блока концевых мер определяют по формуле



где h - размер установочного блока концевых мер, мм; L - расстояние между осями роликов линейки, мм; α - угол поворота линейки.


Индикатором 2, установленным на штативе, определяют разность положений δh поверхности конуса на длине 1. Отклонение угла, ", при вершине конуса рассчитывают по формуле


δα = 2*10 5 δh/l.


Действительный угол проверяемого конуса ак определяют по формуле


αк = α ± δα ± Δл,


где Δл - погрешность измерения синусной линейкой, которая зависит от угла α, погрешности блока концевых мер длины и погрешности расстояния между осями роликов L.


Так, погрешности измерения углов синусными линейками с расстоянием между осями роликов 200 мм для измеряемых углов до 15 ° составляют 3", при измерении углов до 45° - 10", при измерении углов до 600 - 17", при измерении углов до 80° - 52".


Пределы допускаемой погрешности линеек при установке их на углы до 45 ° не должны превышать для 1-го класса ±10", а для 2-го класса - ±15".

Для контроля углов применяют различные средства: угольники, угловые меры, конические калибры, угломеры, механические и оптические делительные головки, гониометры, синусные линейки и др. Угольники, калибры и угловые меры являются жесткими контрольными инструментами, они имеют определенные значения углов. Угольники подразделяются на цельные (рис. 28, а) и составные (рис. 28, б). Угловые меры – плитки (рис. 28, в) выпускаются наборами с таким расчетом, чтобы из трех – пяти мер можно было составлять блоки в пределах от 10 до 90 0 ; их изготовляют в виде плиток толщиной 5 мм с точностью угла (1-й класс) и (2-й класс). Они имеют или один рабочий угол или четыре рабочих угла: .

Угловые меры в основном применяют для поверки и градуировки различных средств измерения углов , но они могут применяться и непосредственно для измерения углов у деталей машин.

Для измерения углов у деталей чаще всего пользуются универсальными угломерами: нониусными с величиной отсчета , оптическими с величиной отсчета , индикаторными с величиной отсчета .


Рис. 28. Виды жестких измерительтельных средств:

а – цельный угольник, б – составной, в – угловая мера.

Угломер с нониусом (рис. 29) состоит из трех основных частей: жестко скрепленных линейки 1 и лимба 2 , который имеет полукруглую форму; жестко скрепленных линейки 5 с сектором 3 и дополнительного угольника 6 , которым пользуются при измерении острых


углов (менее 90 0). Линейка 5 вращается на оси 4 , связанной с лимбом. На дуге лимба 2 нанесена шкала с ценой деления 1 0 , а на дуге сектора 3 – нониус, который дает возможность отсчитывать дробные части шкалы.

Рис. 29. Нониусный угломер.

Для измерения острых углов (менее 90 0) к линейке 5 присоединяют дополнительный угольник 6 .

Нулевой штрих нониуса показывает число градусов, а штрих нониуса, совпадающий со штрихом шкалы лимба 2 , - число минут.

При измерении тупых углов (более 90 0) дополнительный угольник 6 не нужен, но в этом случае к показаниям, снятым по шкале, необходимо еще прибавлять 90 0 .

Находят применение также оптические угломеры, имеющие две линейки и корпус, в котором размещен стеклянный диск со шкалой, разделенной на градусы и минуты.


Рис. 30. Схема измерения угла конуса на синусной линейке.

Отчет производится после того, как положение угломера зафиксировано зажимным рычагом.

Косвенные методы контроля конусов . Наиболее точными и широко применяемыми являются косвенные методы измерений, при которых измерят не непосредственно углы конусов, а линейные размеры, геометрически связанные с углами.

После определения значения этих линейных размеров расчетом находят и значения углов.

Измерение с помощью линейки . Синусные линейки, выпускаемые инструментальной промышленностью, делятся на три типа: тип I – без опорной плиты, тип II – с опорной плитой, тип III – с двумя опорными плитами и двойным наклоном.

Предметный столик 1 (рис. 30 ) синусной линейки имеет два ролика 2 и 3 с определенным расстоянием между ними L . Если под одним из роликов подложить блок 4 из плоскопараллельных концевых мер размером h , то предметный столик наклонится на угол и его можно определить по формуле:

.

При измерении угла конуса проверяемое изделие устанавливают на предметный столик, ориентируя его так, чтобы измеряемый угол находился в плоскости, перпендикулярной роликам синусной линейки (для этого используют боковые поверхности предметного столика). Установив изделие 5 на предметный столик 1, под ролик подкалывают блок из плоскопараллельных концевых мер 4. Размер блока определяют по формуле

,

где - номинальное значение измеряемого угла.

При разности показаний измерительной головки 6 в двух положениях на измеряемой длине можно определить отклонения измеряемого угла () от номинального значения по формуле

.

Действительную величину угла можно определить, подобрав такой блок плиток, при котором показания измерительной головки не будет отличаться на всей измеряемой длине.

Измерение наружных конусов с помощью роликов . Этот косвенный метод измерения (рис. 31 ) угла конуса изделия 1 осуществляется при использовании плиты 2, двух роликов 3 одинакового размера (можно использовать ролики от роликовых подшипников), концевых мер 4 и микрометра с ценой деления 0,01 мм или рычажного с ценой деления 0,002 мм .


Рис. 31. Схемы измерения угла конуса с помощью калиброванных

роликов (а, б),колец (в), шариков (г).

Сначала измеряют размер по диаметрам роликов 3 (рис. 31,а ), затем под ролики подкладывают блоки из концевых мер 4 одинакового размера и определяют размер (рис. 31,б ). Зная размеры , , находят конусность по формуле

или ,

По такому же принципу измеряют конусность у вала с помощью двух калиброванных колец (рис. 31,в ) с заранее известными диаметрами D и d и толщиной . После надевания колец на конус вала измеряют размер H и определяют тангенс угла по формуле

.

Измерение внутренних конусов . Угол внутреннего конуса определяют с помощью двух шариков, диаметры которых заранее известны, и глубиномера (рис. 31,г ).

Втулку 1 ставят на плиту 2, закладывают внутрь шарик малого диаметра d и измеряют при помощи глубиномера (микрометрического или индикаторного) размер , затем закладывают шарик большего диаметра D и измеряют размер . При таком методе измерения конусность втулки определяют по формуле:

.

Контроль конусов калибрами

Контроль калибрами (рис. 32) основан на проверке отклонений базорасстояния по методу осевого перемещения калибра относительно проверяемой детали или на проверке по краске.


Рис. 32. Конусные калибры:

а – втулка, б – пробка, в – скоба.

Калибрами для проверки наружных конусов служат втулки (рис. 32, а ) или скоба (рис. 32, в ), а для внутренних конусов – пробки (рис. 32, б ), со стороны большого диаметра которых наносятся риски на расстоянии от торца калибра, равном допуску базорасстояния .

Торец проверяемых конических вала и втулки при сопряжении с калибром не должен выходить за пределы рисок или уступа на калибре. Если это условие нарушено, то угол конуса выходит из установленных пределов (допуска).

Конусные калибры – втулки проверяют по контрольным калибрам – пробкам. Контрольные калибры изготовляют с повышенной точностью конусности и проверяют универсальными средствами.

Вопросы для повторения:

1. Сколько степеней точности установлено для допусков на угловые размеры и почему допуск на угол уменьшается с увеличением длины меньшей стороны угла?

2. Назовите примеры применения конических соединений и их преимущества в сравнении с цилиндрическими соединениями.

3. Начертите конус и покажите основные параметры его.

4. Что называется базорасстоянием и в какой зависимости находится изменение его величины от допусков на диаметры конуса и конусности?

5. Как устроен угломер с нониусом и какие углы им можно измерять?

6. Расскажите о косвенных методах измерения угла наружного и внутреннего конусов.

7. Как осуществляется контроль наружных и внутренних конусов коническими калибрами?

Литература:


Лекция 7 . ДОПУСКИ, ПОСАДКИ И СРЕДСТВА ИЗМЕРЕНИЯ

РЕЗЬБОВЫХ СОЕДИНЕНИЙ

Основные элементы метрической крепежной резьбы

и допуски на них

В машиностроении применяют различные резьбовые соединения: цилиндрические, конические, трапецеидальные и др. Эти резьбы имеют ряд общих признаков, а так как наиболее распространенными являются цилиндрические крепежные резьбовые соединения с треугольным профилем, то применительно к ним и будут рассмотрены допуски, методы и средства контроля.



Профиль метрической цилиндрической резьбы (рис. 33, а) представляет собой равносторонний треугольник с углом при вершине , равным 60 0 . Основными параметрами резьбы, общими для наружной резьбы (болта) и внутренней резьбы (гайки), являются: наружный диаметр и , внутренний диаметр и , средний диаметр и , шаг резьбы , угол профиля , угол между стороной витка и перпендикуляром к оси резьбы , теоретическая высота витка , рабочая высота витка резьбы . При измерении угла профиля и расчетах допусков учитывается угол , так как при нарезании резьбы ее профиль может быть завален на сторону так, что с правой стороны будет больше или меньше, чем с левой стороны, а в целом весь угол профиля может быть равен 60 0 .

Рис. 33. Метрическая цилиндрическая резьба:

а – профиль резьбы, б – схема расположения полей допусков.

Под средним диаметром понимают диаметр воображаемого, соосного с резьбой, цилиндра, который делит профиль резьбы так, что толщина витка, ограниченная на рис. 33, а буквами а – б, равна ширине впадины, ограниченной буквами б – в . Шаг резьбы – это расстояние вдоль оси резьбы между параллельными сторонами двух рядом лежащих витков.

Единой системой допусков и посадок СЭВ для метрической резьбы с размерами от 0,25 до 600 мм предусмотрены три стандарта: СТ СЭВ 180-75 определяет профиль резьбы; СТ СЭВ 181-75 – диаметры и шаги; СТ СЭВ 182-75 – основные размеры. Предельные отклонения и допуски резьбовых соединений с зазорами устанавливает СТ СЭВ 640-77.

Значения диаметров резьбы разбиты на 3 ряда (1, 2 и 3-й). При выборе диаметров резьбы предпочтительным является первый ряд. Второй ряд диаметров резьбы берется, если диаметры 1-го ряда не удовлетворяют требованиям конструктора; в последнюю очередь диаметры берутся из 3-го ряда. По числовой величине шага резьбы для диаметров 1-64 мм делятся на две группы: с крупным шагом и мелкие, а резьбы диаметром свыше 64 мм , (до 600 мм ) имеют только мелкие шаги.


Допуски для цилиндрической крепежной резьбы () установлены на следующие параметры: на средний диаметр болта и гайки в виде величин и , (поле допуска для гайки расположено в плюс, а для болта – в минус от номинального размера); на наружный диаметр болта и на внутренний диаметр гайки .

Допуски на наружный диаметр гайки и внутренний диаметр болта не установлены. Технология нарезания резьбы и размеры резьбообразующих инструментов (метчиков, плашек и др.) гарантируют, что наружный диаметр резьбы гайки не будет меньше теоретического, а внутренний диаметр резьбы болта – больше теоретического.

На шаг резьбы и угол профиля в отдельности допуски не установлены, а возможные отклонения по ним допускаются за счет изменения среднего диаметра резьбы в пределах его допуска. Такая компенсация погрешностей шага и угла за счет допуска , возможна потому, что шаг и угол геометрически связаны со средним диаметром.

Основным параметром, контролируемым при обработке углов и конусов, является плоский угол, за единицу которого принят градус. Градусом называется 1/360 часть окружности, он состоит из 60 угловых минут, а минуты – из 60 угловых секунд.

Методы измерения углов можно разделить на 3 основных вида:

1. Метод сравнения с жесткими угловыми мерами или шаблонами.

2. Абсолютный метод, основанный на применении измерительных инструментов с угловой шкалой.

3. Косвенный метод, состоящий в измерении линейных размеров, связанных с углом конуса тригонометрическими зависимостями.

Простейшие инструменты для контроля углов – угольники с углом 90 0 , предназначенные для разметки и проверки взаимной перпендикулярности отдельных поверхностей деталей при монтаже оборудования и для контроля инструмента, приборов и станков. В соответствии со стандартом различают 6 типов угольников (рис. 2.12.):


Более универсальные инструменты для контроля и разметки углов – транспортирные угломеры (простые, оптические, универсальные). В машиностроении широко применяются угломеры с нониусом типа УН для измерения наружных и внутренних углов и типа УМ для измерения только наружных углов (рис. 2.13.).


Приемы измерения углов смотрите рис. 2.14.


Калибры применяются для контроля размеров отверстий и наружных поверхностей деталей. В производстве не всегда нужно знать действительный размер. Иногда достаточно убедиться в том, что действительный размер детали находится в пределах установленного допуска, т.е. между наибольшими и наименьшими предельными размерами. В соответствии с этими размерами применяют предельные калибры, которые имеют две (или две пары) измерительные поверхности проходной и непроходной частей. Различают калибры гладкие, резьбовые, конусные и др. Калибры-пробки, калибры-скобы в зависимости от размеров контролируемых деталей, типа производства и других факторов имеют различные конструктивные формы (рис. 2.15, рис. 2.16).



Проходная сторона (ПР) пробки или скобы имеет размер, равный наименьшему предельному размеру отверстия или вала, а непроходная сторона (НЕ) – наибольшему предельному размеру вала и соответственно отверстия. Приемы измерения калибрами-пробками и калибрами-скобами показаны на рис. 2.16.

Калибры для конусов инструментов представляют собой калибры-пробки и калибры-втулки. Контроль инструментальных конусов производят комплексным методом, т.е. одновременно проверяют угол конуса, диаметры и длину (рис. 2.17).


Шаблоны применяют для проверки сложных профилей деталей и линейных размеров. Шаблоны изготовляют из листовой стали. Контроль производят сопряжением шаблона с проверяемой поверхностью. По размеру и равномерности просвета судят о качестве обработки (рис. 2.18., рис. 2.19.).


Контроль резьбы в зависимости от типа (профиля) и точности производится различными контрольно-измерительными средствами.

Шаблоны резьбовые для определения шага и профиля резьбы представляют собой закрепленные в обойме наборы стальных пластин с точными профилями (зубьями) метрической и дюймовой резьб. На каждой пластине указаны значения шага, диаметры резьбы или количество ниток на дюйм.

Шаблоны радиусные служат для измерения отклонения размеров выпуклых и вогнутых поверхностей деталей (рис. 2.18.). Для измерения глубины пазов, высоты и длины уступов применяют предельные калибры-шаблоны, работающие на просвет. Они также имеют две стороны и обозначены Б (для большего размера) и М (для меньшего размера). На рис. 2.19. показаны шаблоны для контроля длины, ширины и высоты выступов и пазов различными методами: "на просвет", "надвиганием" и "методом рисок".

Резьбовые калибры (пробки и кольца) применяют для контроля внутренних и наружных резьб (рис. 2.20.).


Резьбовые микрометры со вставками применяют для измерения среднего диаметра треугольной наружной резьбы.

Вставки выбирают в соответствии с шагом измеряемой резьбы из набора имеющегося в футляре для микрометра (рис. 2.21.). Чтение показаний микрометра производят так же, как при измерении гладких цилиндрических поверхностей.


Контроль резьбы также может быть осуществлен микрометром с применением трех измерительных проволочек (рис. 2.22.). При этом методе измеряется расстояние М между выступающими точками трех проволочек, помещаемых во впадины резьбы, затем путем математических преобразований определяют средний диаметр d 2 резьбы.

Диаметр проволочек d пр выбирают по таблице в зависимости от шага резьбы. Две проволочки устанавливают во впадины с одной стороны, а третью – в противоположную впадину (рис. 2.22.)

Средний диаметр метрической резьбы d 2 = М – 3 d пр + 0,866 Р

Средний диаметр дюймовой резьбы d 2 = М – 3,165 d пр + 0,9605 Р

Плоскопараллельные концевые меры длины применяются для переноса размера единицы длины на изделие (при разметке), проверки и настройки средств измерения (микрометров, калибр скоб и др. измерительных приборов), непосредственного измерения размеров изделий, приспособлений, при наладке станков и т.п.

Одним из основных свойств концевых мер является прилипаемость, способность прочно соединяться между собой при прикладывании и надвигании одной меры на другую с некоторым давлением, что достигается благодаря очень низкой шероховатости измерительных поверхностей. Концевые меры комплектуются в наборе с количеством 7…12 плиток (рис. 2.23).


Наиболее широко применяют наборы, состоящие из 87 и 42 концевых мер. Каждая плитка воспроизводит только один размер, который маркируется на одной из ее сторон. Для удобства использования концевых мер длины к ним выпускают наборы принадлежностей (рис. 2.24.), в состав которых входят: основания – 5, плоскопараллельные, радиусные – 2, чертильные – 3, центровые боковички – 4, державки – 1 для крепления блоков концевых мер с боковичками. Составление блока концевых мер длины производят в соответствии с классом или разрядом плиток и размерами плиток, имеющихся в данном наборе.

Первоначально подбирают меньшую плитку, в размер которой входит последний десятичный знак и т.д. Допустим, необходимо собрать блок концевых мер размером 37,875 мм из набора, состоящего из 87 плиток:

1 плитка 1,005 мм, остаток 36,87

2 плитка 1,37 мм, остаток 35,5

3 плитка 5,5 мм, остаток 30,00

4 плитка 30 мм, остаток 0.

Сумма блок 1,005+1,37+5,5+30 = 37,875.

Таким же способом набирают блок из набора, состоящего из 42 плиток.

1,005+1,07+4,00+30 = 37,875.


Приемы измерения плоскопараллельными концевыми мерами длины и разметки с использованием принадлежностей к ним показаны на рис. 2.25.

Угловые призматические меры (плитки) предназначены для проверки и настройки измерительных угломерных приборов и инструментов, а также для непосредственного измерения наружных и внутренних углов деталей с высокой плотностью. Угловые меры выполняют при измерении углов ту же роль,

что и концевые меры при измерении длины. К рабочим сторонам угловых мер предъявляют такие же требования, что и к концевым мерам, т.е. обеспечение адгезии (прилижаемости).


Угловые меры выпускают наборами с количеством 7…93 плиток в каждом (рис. 2.26.). Проверку углов плитками выполняют "на просвет".

Для увеличения прочности блока, собранного из угловых плиток, к ним выпускают набор принадлежностей, в состав которых входят стяжки, винты, клинья и другие (рис. 2.27.). Укрепляют блок через специальные отверстия в плитках.

Правила расчета угловых мер для образования блоков, а также правила подготовки к сборке и сборка их в блок аналогичны правилам, применяемым при составлении концевых мер длины.

Приемы измерения угловыми мерами показаны на рис. 2.28.

Результаты угловых измерений в ГГС должны быть равноточными, т.е. на всех пунктах иметь один и тот же вес, и получены с наивысшей точностью при наименьших затратах труда и времени. Для этого высокоточные измерения каждого направления и угла выполняют по строго одинаковой наиболее совершенной методике в периоды наивыгоднейшего времени наблюдений, когда влияние внешней среды минимально. Необходимо, чтобы каждое направление измерялось на разных диаметрах лимба, равномерно распределенных по кольцу делений; в приеме должно быть обеспечено единообразие операций при измерении каждого направления и симметрия во времени относительно среднего для приема времени наблюдений; целесообразно все направления и углы на пункте измерять симметрично относительно момента изотермии воздуха.

Перед выполнением наблюдений на пункте производят осмотр геодезического знака, откапывают центр до марки с меткой, на площадку наблюдателя поднимают теодолит и другое снаряжение, крышу сигнала накрывают брезентом. В результате осмотра наблюдатель должен убедиться в прочности и устойчивости столика сигнала и в том, что внутренняя пирамида не соприкасается с полом площадки для наблюдателя и с лестницей. Обнаруженные недостатки необходимо устранить.

Перед наблюдением с помощью теодолита согласно схеме геодезической сети отыскивают все подлежащие наблюдению пункты и после наведения на них делают с точностью до 1’ отсчеты по горизонтальному и вертикальному кругам. Кроме того, при наведении на пункты положение алидады фиксируют на нижней части прибора с помощью штрихов против индекса на алидаде. Теодолит устанавливают на штатив или столик сигнала не менее чем за 40 минут до начала наблюдений. К измерению горизонтальных направлений приступают при хорошей видимости, когда изображения визирных целей спокойны или слегка колеблются (в пределах 2”).

Измерение отдельного угла. Незакрепленную алидаду отводят влево на 30 – 40 0 и обратным вращением наводят на визирную цель первого направления так, чтобы она оказалась справа от биссектора, алидаду закрепляют. Наводящим винтом алидады, только ввинчиванием, биссектор наводят на визирную цель и берут отсчет по оптическому микрометру (если имеется окулярный микрометр, то трижды наводят его биссектор на визирную цель и берут отсчеты). Открепляют алидаду и наводят на 2-е направление так же, как и на 1-е. На этом заканчивается полуприем.

Трубу переводят через зенит, по часовой стрелке наводят на 2-е направление, предварительно отведя алидаду на 30 – 40 0 ; наводящим винтом биссектор наводят на визирную цель и берут отсчет по оптическому микрометру. По часовой стрелке алидаду поворачивают на угол, дополняющий измеряемый до 360 0 , наводят на визирную цель 1-го направления, берут отчет. Заканчивается прием.


Способ круговых приемов – способ Струве. Способ был предложен в 1816 г. В.Я. Струве, получил широкое применение почти во всех странах. В нашей стране используется в геодезических сетях 2 - 4 классов и сетях более низкой точности.

В этом способе при неподвижном лимбе алидаду вращают по ходу часовой стрелки и биссектор сетки нитей трубы последовательно наводят на первый, второй,…, последний и снова на первый (замыкание горизонта) наблюдаемые пункты, каждый раз отсчитывая по горизонтальному кругу. В этом состоит первый полуприем. Затем трубу переводят через зенит и, вращая алидаду против часовой стрелки, наводят биссектор на те же пункты, но в обратной последовательности: на первый, последний, …, второй, первый; заканчивают второй полуприем и первый прием., состоящий из первого и второго полуприемов.

Между приемами лимб переставляется на угол

где m – число приемов, i – цена деления лимба.

Наведение биссектора на на визирную цель выполняют только ввинчиванием наводящего винта алидады. Перед каждым полуприемом алидаду вращают по ее движению в данном полуприеме.

В результаты измеренных направлений вводят поправки за рен, наклон вертикальной оси теодолита (при углах наклона визирного луча в 1 0 и более) и поправки за кручение знака – по отсчетам по окулярному микрометру поверительной трубы.

Контроль угловых измерений: по расхождениям значений первого направления в начале и конце полуприема (незамыкание горизонта), по колебанию двойной коллимационной ошибке, определяемой для каждого направления, и по расхождению приведенных к нулю значений одноименных направлений, полученных в разных приемах. В триангуляции 2 – 4 классов незамыкание горизонта и колебание направлений в приемах не должны превышать 5, 6 и 8” для Т05, Т1; ОТ-02 и Т2; колебание 2С – 6,8 и 12” для этих же теодолитов соответственно.

В пунктах 2 класса направления измеряют 12-15 круговыми приемами, на пунктах 3 класса – 9, на пунктах 4 класса – 6, а в сетях полигонометрии 2, 3, 4 классов – 18, 12, 9 приемами.

Уравнивание на станции сводится к вычислению среднего значения по каждому направлению из m приемов. При этом предварительно все измеренные направления приводят к начальному, придав ему значение 0 0 00’00,00”. Вес уравненного направления равен p = m – числу приемов измерений. Для оценки точности направления обычно применяют приближенную формулу Петерса

где μ – с.к.о. направления, полученного из одного приема (с.к.о. единицы веса); ∑‌‌[v ] – сумма абсолютных величин уклонений измеренных направлений от их средних значений, вычисленных по всем направлениям; n, m – число направлений и приемов соответственно. Значения k при m = 6, 9, 12, 15 равны 0,23; 0,15; 0,11; 0,08. С.к.о. уравненного направления (среднего из m приемов) вычисляют по формуле

Достоинства способа круговых приемов: простота программы измерений на станции; значительное ослабление систематических ошибок делений лимба; высокая эффективность при хорошей видимости по всем направлениям.

Недостатки: сравнительно большая продолжительность приема, особенно при большом числе направлений; повышенные требования к качеству геодезических сигналов; необходимость примерно одинаковой видимости по всем направлениям; разбивка направлений на группы при их большом числе на пункте; более высокая точность начального направления.

Способ измерения углов во всех направлениях – способ Шрейбера. Этот метод предложен Гауссом. Методика разработана Шрейбером, применившим его в 1870-х годах в прусской триангуляции. В России начал применяться с 1910 г., используется и в настоящее время. Суть способа: на пункте с n направлениями измеряют все углы, образующиеся при сочетании из n по 2, т.е.

1.2 1.3 1.4 … 1.n

Число таких углов

Значение углов можно получить путем непосредственных измерений и путем вычислений. Если вес непосредственно измеренного угла равен 2 , то вес этого же угла, полученного из вычислений, будет равен 1. Следовательно. Вес угла, полученного из вычислений, в два раза меньше веса непосредственно измеренного угла.

При уравнивании на станции для каждого угла вычисляют его среднее значение из всех приемов (при допустимых расхождениях между приемами). Используя эти средние, находят уравненные на станции углы как среднее весовое значение. Учитывая, что сумма весов измеренного и вычисленных значений данного угла , находим

где n – число направлений на пункте. Углы, полученные в результате уравнивания на станции, по направлениям – равноточны.

Применяя формулу веса функции, для угла находим

Так как , то , откуда . При Р = 1 , , т.е. веса уравненных углов равны половине числа направлений, наблюдаемых с данного пункта. Если каждый угол измерен m приемами, то при n направлениях вес каждого угла будет равен mn / 2. Для равенства весов окончательных углов на всех станциях необходимо, чтобы произведение mn для всех пунктов сети являлось постоянным. Так как вес направления в два раза больше веса угла, то mn – вес направления.

Вес углов, измеренных во всех комбинациях должен быть равен весу углов, измеренных способом круговых приемов, т.е. p = m кр = mn / 2 , откуда 2m кр = mn , где m кр – число приемов в методе круговых приемов. Например, если углы в триангуляции 2 класса измеряют 15 круговыми приемами (m кр = 15), то mn = 30; при числе направлений n = 5 способом во всех комбинациях их нужно измерять 6 приемами (m = 30 / 5 = 6).

При измерении углов способом во всех комбинациях выполняют следующий контроль: 1) расхождение углов из двух полуприемов – 6” для теодолита с окулярным микрометром и 8” – без; 2) расхождение углов из разных приемов 4 и 5” для сетей 1 и 2 классов соответственно; 3) колебание среднего значения угла, полученного по результатам непосредственных измерений и найденного из вычислений, не должно превышать 3 “ при n до 5 и 4” – более 5. Если законченные приемы не удовлетворяют этим допускам, то их переделывают на тех же установках круга. Если второй контроль не выполняется, то перенаблюдают углы, имеющие максимальное и минимальное значение, при тех же установках круга. Все наблюдения выполняют заново, если число повторных приемов более 30% от числа приемов, предусмотренных программой. Наблюдения повторяют и при несоблюдении третьего контроля.

С.к.о. единицы веса и уравненного угла определяют по формулам

Достоинства способа: уравненные результаты являются рядом равноточных направлений; углы можно измерять в любой последовательности, выбирая наиболее благоприятные условия видимости и обеспечивая в итоге высокую точность; малая продолжительность одного приема (2-4 минуты измерения угла) обеспечивает меньшую зависимость точности результата от кручения сигнала; большое число перестановок горизонтального круга ослабляет влияние ошибок диаметров лимба.

Недостатки: быстрое уменьшение числа m приемов измеренного угла с ростом числа n направлений на пунктах (малое число приемов непосредственного измерения углов снижает точность их средних и уравненных значений); быстрый рост объема работ при n > 5.

Способ неполных приемов предложен в 1954 г. Ю.А. Аладжаловым. Все направления разбивают на группы по три направления (без замыкания горизонта) так, чтобы определяемые по ним углы соответствовали бы углам, измеренным во всех комбинациях, но требовали бы меньшего объема работ и позволили увеличить число приемов непосредственных измерений каждой группы направлений. Следовательно, в этом способе заложено стремление избавиться от недостатков методов Струве и Шрейбера при наблюдении на пунктах с большим количеством направлений.

Практически не всегда путем подбора можно разбить направления на группы из трех направлений. В этом случае кроме групп из трех направлений измеряют отдельные углы, дополняющие программу. Программа измерений приведена в Инструкции. Способ неполных приемов применяется в триангуляции 2 класса на пунктах с 7 – 9 направлениями.

Обработка результатов измерений на станции заключается в определении средних значений направлений из m приемов в каждой группе и средних значений отдельных углов. По этим средним значениям вычисляют все углы – по три угла из каждой группы из трех направлений. Окончательно уравненные углы вычисляют по формулам способа Шрейбера. С.к.о. уравненных направлений определяют по формуле

где v – разности между измеренными и уравненными значениями углов; n – число направлений на пункте; r – число отдельно измеренных углов в программе. Вес уравненных направлений

где m – число приемов измерений направлений и отдельных углов; n, k – число направлений на пункте и в группе соответственно (k = 3, для углов k = 2).

Достоинства способа: результаты уравнивания на станции равноточны; объем работы на пункте на 20 – 25% меньше, чем в способе Шрейбера; число приемов непосредственных измерений групп при n = 7 – 9 больше, чем в способе Шрейбера, что позволяет более полно ослаблять ошибки измерений; дает возможность измерять направления, на которые в данный момент имеется хорошая видимость; короткая продолжительность приема (2 – 4 минуты), что позволяет уменьшить зависимость точности измерений от качества сигнала.

Недостатки: отсутствуют правила образования групп из трех направлений; при n = 8 нужно измерять большое число отдельных углов, что приводит к неклторому нарушению равноточности уравненных направлений; программа не предусматривает ослабление односторонне действующих ошибок измерений.

Видоизмененный способ измерения углов в комбинациях предложен А.Ф.Томилиным. Используется в триангуляции 2 класса на пунктах с 6 – 9 направлениями. В этом способе на станции с n направлениями независимо измеряют 2n углов:

1.2 2.3 3.4 … n.1;

1.3 2.4 3.5 … n.2.

Каждый угол измеряют 5 или 6 приемами. В этом способе измеряют не все углы, образующие сочетания направлений из n по 2, поэтому результат уравнивания на станции не является рядом равноточных направлений, и формулы для вычислений поправок в измеренные углы являются довольно сложными.

Достоинства способа: при n =7 – 9 число приемов непосредственных измерений углов больше и их точность выше, чем в способе Шрейбера; требует меньшего объема измерений, чем способ во всех комбинациях.

Недостатки: сложные формулы для вычисления поправок в измеренные углы.

2.8.1. Основные понятия . Для угловых размеров, так же как и линейных, существуют ряды нормальных углов . Однако в отношении углов это понятие используется значительно реже, поскольку при разработке элементов деталей с угловыми размерами значение угла часто получается либо расчетным путем для обеспечения определенных функций разрабатываемой конструкции механизма, либо определяется необходимым расположением функциональных узлов. Поэтому для угловых размеров реже приходится пользоваться понятием нормального угла .

В отношении угловых размеров также используется понятие допуска, аналогичное допуску на линейный размер.

Допуском угла называется разность между наибольшим и наименьшим предельными допускаемыми углами. Допуск угла обозначается AT (сокращение от английского выражения Angle tolerance - угловой допуск).

При нормировании точности угловых размеров не применяется понятие «отклонение», а предусматривается, что допуск может быть расположен по-разному относительно номинального значения угла. Допуск может быть расположен в плюсовую сторону от номинального угла (+АТ ), или в минусовую (-AT ), или же симметрично относительно него (±АТ/2 ). Естественно, что в первом случае нижнее, а во втором случае верхнее отклонения равны нулю, т.е. соответствуют случаям отклонений как для основного отверстия и основного вала при нормировании точности линейных размеров.

Особенность изготовления и измерения угловых размеров заключается в том, что точность угла в значительной мере зависит от Длины сторон, образующих этот угол. И в процессе изготовления деталей и при их измерении чем меньше длина стороны угла, тем труднее выполнить точный угол и тем труднее его точно измерить. Правда, при очень длинных сторонах углов появляется другая неприятность в виде искажения (отклонение от прямой) линий, образующих Угол. Исходя из этих особенностей угловых размеров, при нормировании требований к точности значение допуска угла задается в зависимости от длины меньшей стороны, образующей угол, а не от значения номинального угла.

2.8.2. Способы выражения допуска угла . С учетом того, что значение угла выразить разными способами, при нормировании требований к точности значения допуска выражается по-разному (ГОСТ 2908-81 ) и используется соответствующее обозначение угла:

α - номинальный угол

AT α - допуск, выраженный в радианной мере, и соответствующее ему точное значение в градусной мере;

AT " α - допуск, выраженный в градусной мере, но с округленным значением по сравнений с радианным выражением;

АТh - допуск, выраженный в линейной мере длиной отрезка на перпендикуляре к концу меньшей стороны угла.

Связь между допусками в угловых и линейных единицах выражается зависимостью ATh = AT αLi 10 3 , где ATh измеряется в мкм, AT α - в мкрад; Li – длина.


2.8.3. Ряды точности для угловых размеров . В ГОСТ 2908-81 установлены 17 рядов точности, названных степенями точности (с 1 по 17). Понятие «степень точности» идентично понятию «квалитет», «класс точности».

Обозначение точности производится указанием условного обозначения допуска на угол и степени точности, например АТ5, АТ7.

Ряды допусков, т.е. разность между допусками соседних степеней, образованы с помощью коэффициента 1,6, т.е. если необходимо получить допуски угла для 18-го квалитета, которого нет в стандарте, надо допуски АТ17 умножить на 1,6, а для получения АТО надо допуски ATI разделить на 1,6.