Главная · Электробезопасность · Условия симметрии трехфазного потребителя электроэнергии. Трехфазные электрические цепи

Условия симметрии трехфазного потребителя электроэнергии. Трехфазные электрические цепи

Трехфазные электрические цепи очень распространены, так как обладают целым рядом преимуществ по сравнению с однофазными, а также цепями постоянного тока. В данной статью мы рассмотрим понятие трехфазной электрической цепи, а также ее преимущества над остальными.

Понятие трехфазной цепи

Итак, трехфазная электрическая цепь, это цепь, в ветвях которой существуют три ЭДС изменяющиеся во времени по гармоническому закону (синусоидальному закону) с одинаковой частотой, но имеющих фазовый сдвиг друг относительно друга на угол равный 2π/3 (120 0).

Для получения трехфазного гармонического сигнала используют трехфазные синхронные генераторы, в трех статорных (якорных) обмотках которых и индуктируются эти ЭДС.

При указанных ниже на рисунке положительных направлениях ЭДС (от концов фаз x, y, z к их началам a, b, c):

ЭДС будут изменяться согласно приведенным ниже выражениям:

Ниже показаны графики изменения этих величин во времени:

При совмещении вектора ЭДС Е а с осью действительных величин комплексной плоскости:

Получим выражения для ЭДС представленные в комплексной форме:

Также следует отметить, что ЭДС Е а принято направлять вверх вертикально при построении векторных диаграмм, что, в свою очередь, соответствует повороту на 90 0 комплексной плоскости против часовой стрелки. При этом могут не указывать оси мнимых и действительных величин:

Используя положительное направления и обладая информацией о законах изменения ЭДС или имея соответствующие графики, можно определить действительные направления и мгновенные значения ЭДС в любой момент времени. Так, например, при t = 0, e a = 0, a:

В случае, когда е b < 0, а e c > 0, то при t = 0 ЭДС е с и е b будут направлены в разные стороны.

Если посмотреть на график б), где представлен трехфазный гармонический сигнал, можно увидеть, что максимального значения первой достигнет фаза А, после нее фаза В, и только потом фаза С. Данная последовательность достижения фазами своих максимальных (амплитудных) значений носит название прямой последовательности чередования фаз. Если бы ротор синхронного генератора вращался в обратную сторону, то чередования фаз было бы обратным С-В-А, и это была бы обратная последовательность чередования фаз. Именно от этой последовательности напрямую зависит направления вращения как трехфазных асинхронных электромашин, так и трехфазных синхронных машин. Расчеты и анализ трехфазных цепей, как правило, проводят в предположении, что система имеет прямое чередование фаз.

Симметричные и несимметричные трехфазные системы

Система из трех ЭДС будет называться симметричной в том случае, если все три значения напряжений и токов фаз будут иметь одинаковые действующие значения, иметь сдвиг друг относительно друга на угол 2π/3 или 120 0 .

Несимметричной система будет называться в случае если действующие значения токов и напряжений не будут равны или угол сдвига фаз будет не равен 2π/3 или 120 0 .

Синхронный трехфазные генераторы имеют как раз симметричную систему ЭДС.

Питание потребителей от трехфазной системы электроснабжения

В очень редких случаях питание потребителей электрической энергии осуществляется напрямую от генераторов. Такие системы используются только в случаях аварийного отключения электроснабжения (дизель-генераторы или бензиновые генераторы) или же в местах, куда протягивание ЛЭП является экономически нецелесообразным.

Поэтому в большинстве своем питание потребители электрической энергии получают от вторичных обмоток трансформаторов, которые, как и генераторы, тоже имеют практически симметричную систему ЭДС. Поэтому, как правило, редко учитывают, чем создаются ЭДС на нагрузке – трансформаторами или генераторами.

От трехфазных источников электроэнергии получают питание не только трехфазные потребители, но также и однофазные, а также, в большинстве своем, и потребители постоянного тока (через управляемые или неуправляемые выпрямители).

Также трехфазный приемник электрической энергии можно рассматривать как устройство, которое состоит их трех двухполюсников, имеющих одинаковые параметры, которые подключают к каждому проводу цепи, между которыми существуют напряжения, сдвинуты по фазе относительно друг друга на угол равный 2π/3 или 120 0 . Каждый двухполюсник называют фазой сети переменного тока. Наиболее распространенные трехфазные потребители – асинхронные электродвигатели, электромагниты, электрические печи.

Однофазный же приемник электроэнергии можно рассматривать как обычный двухполюсник, который рассчитан на подключение к двум проводам сети и имеет одно напряжение в отличии от трехфазного. К однофазным электроприемникам можно отнести осветительные лампы, асинхронные электродвигатели малой мощности, бытовые электроприборы и прочие устройства.

Преимущества трехфазных систем

В отличии от однофазных, трехфазные системы обладают целым рядом преимуществ, а именно:

  • Именно трехфазная система позволяет получить вращающееся магнитное поле, что позволяет использовать трехфазные асинхронные электродвигатели;
  • Улучшает технико-экономические показатели трансформаторов и генераторов;
  • Упрощает систему генерации и передачи электрической энергии от генератора к потребителю;
  • Позволяет подключать к сети электроприемники, рассчитанные на разные номиналы напряжений (линейные и фазные);

Трехфазные системы получили наибольшее распространение. Электрическая энергия, выработанная на электрических станциях, доставляется и распределяется между потребителями в виде энергии трехфазного переменного тока.

Если конец каждой фазы обмотки генератора соединить с началом следующей фазы, образуется соединение в треугольник. К точкам соединений обмоток подключают три линейных провода, ведущие к нагрузке.

На рис. 5 изображена трехфазная цепь, соединенная треугольником. Как видно из рис. 5, в трехфазной цепи, соединенной треугольником, фазные и линейные напряжения одинаковы Uл = Uф

Рис. 5. Трехфазная цепь, соединенная треугольником

Линейные и фазные токи нагрузки связаны между собой первым законом Кирхгофа для узлов а, b, с:

Следовательно, при симметричной нагрузке Iл = √3 Iф

Трехфазные цепи, соединенные звездой, получили большее распространение, чем трехфазные цепи, соединенные треугольником. Это объясняется тем, что, во-первых, в цепи, соединенной звездой, можно получить два напряжения: линейное и фазное. Во-вторых, если фазы обмотки электрической машины, соединенной треугольником, находятся в неодинаковых условиях, в обмотке появляются дополнительные токи, нагружающие ее. Такие токи отсутствуют в фазах электрической машины, соединенных по схеме "звезда".

3.2 Расчёт симметричных режимов работы трёхфазных цепей

Трехфазные цепи являются разновидностью цепей синусоидального тока, и, следовательно, все рассмотренные ранее методы расчета и анализа в комплексной форме в полной мере распространяются на них.

Трёхфазный приемник и вообще трёхфазная цепь называются симметричными , если в них комплексные сопротивления соответствующих фаз одинаковы , т.е. Z A = Z B = Z C . В противном случае они являются несимметричными . Равенство модулей указанных сопротивлений не является достаточным условием симметрии цепи. Так, например трехфазный приемник на рис. 6 является симметричным, а на рис. 7 – нет.


Рис. 6. Рис. 7.

Если к симметричной трехфазной цепи приложена симметричная трехфазная система напряжений генератора, то в ней будет иметь место симметричная система токов. Такой режим работы трехфазной цепи называется симметричным . В этом режиме токи и напряжения соответствующих фаз равны по модулю и сдвинуты по фазе друг по отношению к другу на угол

. Вследствие указанного расчет таких цепей проводится для одной фазы, в качестве которой обычно принимают фазуА . При этом соответствующие величины в других фазах получают формальным добавлением к аргументу переменной фазы А фазового сдвига

при сохранении неизменным ее модуля. Так для симметричного режима работы цепи на рис. 8


при известных линейном напряжении и сопротивлениях фаз Z AB = Z BC = Z CA = Z можно записать

где угол фазового сдвига φ между напряжением и током определяется характером нагрузки Z.

Тогда на основании вышесказанного токи в других двух фазах равны:

Комплексы линейных токов можно найти с использованием векторной диаграммы, из которой следует

Пример расчёта симметричного режима работы трёхфазной цепи приведён в приложении 3.

4. Электрические цепи периодического несинусоидального тока

Периодические несинусоидальные токи и напряжения в электрических цепях возникают в случае действия в них несинусоидальных ЭДС или наличия в них нелинейных элементов. Реальные ЭДС, напряжения и токи в электрических цепях синусоидального переменного тока по разным причинам отличаются от синусоиды. В энергетике появление несинусоидальных токов или напряжений нежелательно, т.к. вызывает дополнительные потери энергии. Однако существуют большие области техники (радиотехника, автоматика, вычислительная техника, полупроводниковая преобразовательная техника), где несинусоидальные величины являются основной формой ЭДС, токов и напряжений.

Рассмотрим краткие теоретические сведения и методику расчёта линейных электрических цепей при воздействии на них источников периодических несинусоидальных ЭДС.

4.1.Разложение периодической функции в тригонометрический ряд

Как известно, всякая периодическая функция, имеющая конечное число разрывов первого рода и конечное число максимумов и минимумов за период,

может быть разложена в тригонометрический ряд (ряд Фурье):


Первый член ряда называется постоянной составляющей , второй член – основной или первой гармоникой . Остальные члены ряда называются высшими гармониками .

Если в выражении раскрыть синусы суммы каждой из гармоник, то оно примет вид:


В случае аналитического задания функции f (ωt) коэффициенты ряда могут быть вычислены с помощью следующих выражений:


После чего производится расчёт амплитуд и начальных фаз гармонических составляющих ряда:

Коэффициенты ряда Фурье большей части периодических функций, встречающихся в технике, приводятся в справочных данных или в учебниках по электротехнике.

Цепи трехфазного тока

Многофазные и трехфазные системы. Принцип получения трехфазной ЭДС

Многофазный источник питания представляет собой совокупность ЭДС одинаковой частоты, сдвинутых друг относительно друга по фазе. Совокупность многофазного источника и многофазного приемника образуют многофазную электрическую цепь. Отдельные электрические цепи, входящие в состав многофазной системы, называются фазами. Таким образом, фаза - понятие двоякое. С одной стороны – это стадия периодического процесса, с другой стороны – часть многофазной электрической цепи.

Если число фаз m=3 – получаем трехфазную систему. Трехфазная система является основной для энергоснабжения предприятий. Благодаря техническим и экономическим характеристикам трехфазный ток обеспечивает наиболее экономичную передачу электрической энергии, позволяет создавать простые по устройству, надежные и экономичные трансформаторы, генераторы, электродвигатели.

Основополагающие исследования, которые привели к внедрению в практику трехфазных систем были сделаны Николой Тесла (происхождение – Австро-Венгрия, сейчас – Хорватия) и русским ученым Доливо-Добровольским.

Основные изобретения, относящиеся к трехфазным системам электроснабжения были сделаны и запатентованы Тесла. Вместе с тем огромное теоретическое и практическое значение имеют работы Доливо-Добровольского, которые впервые применил трехфазные ток в промышленных целях. Все звенья трехфазной цепи: трансформаторы, генераторы, линии передач и двигатели были разработаны М.О. Доливо-Добровольским настолько глубоко, что принципиально не изменились до наших дней.

В отдельных технических устройствах находят применение двухфазная, четырехфазная, шестифазная системы.

Трехфазная система ЭДС получается в трехфазных генераторах. Такой генератор состоит из статора и ротора. В пазах статора размещены три обмотки сдвинутых друг относительно друга в пространстве на 120°. Ротор выполнен в виде постоянного магнита или электромагнита. При его вращении в обмотках наводится ЭДС, графики мгновенных значений которых представлены на рис. 1

Все ЭДС рассмотренной системы имеют равные амплитуды Е m и сдвинуты друг относительно друга по фазе на угол 120°.Такая система ЭДС называется симметричной.

Трехфазная симметричная система

Приняв начало отсчета в момент, когда е a =0, запишем мгновенные значения всех ЭДС.

е L1 =E m *sin ω t

е L2 =E m *sin (ω t-120 °)

е L3 =E m *sin (ω t-240 °)= E m *sin (ω t+120)

В символической форме (в виде комплексных амплитуд):


,


,


, где

.

Векторная диаграмма симметричной трехфазной системы представлена на рис. 2.


Симметричная трехфазная система обладает свойством:


,


.

Это свойство справедливо и для токов при симметричной нагрузке.

Виды соединений трехфазных цепей .

Существует два основных вида соединения обмоток трансформаторов, генераторов, и приемников в трехфазных цепях: соединение звездой и соединение треугольником.

Соединение источника и приемника звездой представлено на рис 3.



Напряжения на зажимах отдельных фаз приемника или источника называются фазными напряжениями.

- фазные напряжения. Напряжения между линейными проводами, соединяющими трехфазный источник с приемником, называются линейными напряжениями.

- линейные напряжения. Токи, протекающие в фазах приемника или генератора, называются фазными токами. Токи, протекающие в линейных проводах, называются линейными токами. Очевидно, что для соединения звездой линейные токи

являются фазными токами. Провод, соединяющий нулевые узлы источника и приемника (узлыn, N), называется нулевым (общим, нейтральным) проводом. По закону токов Кирхгофа ток в нулевом проводе равен


.

При симметричной нагрузке токи в фазах равны. Тогда


=

ток в нулевом проводе будет равен нулю. Следовательно, при симметричной нагрузке источник с нагрузкой может быть связан только тремя линейными проводами.

На рис. 4 приведена векторная диаграмма цепи при симметричном режиме и активно-индуктивном характере нагрузки, при котором токи отстают от напряжений.


Установим соотношение между линейными и фазными напряжениями. Линейные напряжения определяются как разности фазных напряжений.


;

;

.

Из равнобедренного треугольника ANB следует


.

На рис. 5 показано соединение источника и приемника треугольником


При этом типе соединения фазные ЭДС соединяются последовательно. Общие точки каждой пары фазных ЭДС и общие точки каждой пары ветвей приемника соединяются линейными проводами. На первый взгляд такое соединение фазных ЭДС является аварийным короткозамкнутым режимом. Однако не следует забывать, что сумма мгновенных значений ЭДС трехфазного симметричного источника в любой момент времени равна нулю.

На рис. 6 приведены векторные диаграммы напряжений и токов при симметричном режиме и активно-индуктивной нагрузке для соединения треугольником.


Линейные токи определяются как разности фазных токов:


;

;

.

При этом:


;

.

Расчет трехфазных цепей при несимметричной нагрузке.

Расчет трехфазной цепи при соединении источника с приемником треугольником не содержит ничего принципиально нового по сравнению с расчетом обычной цепи синусоидального тока. В цепи на рис. 5 находим фазные токи:


;

;

.

По найденным фазным токам определяем линейные токи на основе закона токов Кирхгофа:


;

;

.

Аналогично рассчитывается трехфазная цепь при соединении источника и приемника звездой с нулевым проводом (рис 3). По закону Ома определяем фазные токи:


;

;

.

Фазные токи для соединения звездой являются токами линейными. Ток в нулевом проводе определяется по закону токов Кирхгофа:


.

Для расчета несимметричной трехфазной цепи при соединении звездой трехпроводной линией используем метод двух узлов.


Рис. 7

Определим напряжение между нулевыми точками источника и нагрузки –

, которое называется напряжением смещения нейтрали.


Зная напряжение

, определим линейные (они же фазные) токи по закону Ома для участка цепи с ЭДС:


=

,


.

Аналогично



Напряжение на фазах нагрузки будут равны:


,


,


.

Рассмотрим два частных случая несимметричной нагрузки.

1) Короткое замыкание одной из фаз нагрузки при равенстве сопротивлений в двух других фазах.


,

.

Напряжение смещения нейтрали

определим по известному выражению, предварительно умножив его числитель и знаменатель на

.


,

Таким образом, при коротком замыкании нагрузка в фазе А , напряжение на ней становится равным нулю, а напряжения на фазах В и С нагрузки увеличиваются до линейных, т.е. в

раз. Напряжение смещения нейтрали для этого случая будет равным фазному напряжению. Векторная диаграмма для этого случая представлена на рис. 8а.


2) Обрыв в одной из фаз нагрузки при равенстве сопротивлений в двух других фазах.


,

.

Напряжение смещения нейтрали для этого случая будет равно:


Напряжения на фазах нагрузки будут равны:

,

,

Таким образом, при обрыве в фазе А нагрузки, напряжение в ней становится в 1.5 раза больше фазного, напряжения на фазах В и С нагрузки уменьшаются и становятся равными половине линейного напряжения, напряжение смещения нейтрали становится равным половине фазного напряжения.

Векторная диаграмма для этого случая представлена на рис. 8б

7.5.Мощность в трехфазной цепи и ее измерение.

Принимая во внимание то, что для симметричной трехфазной цепи, соединенной звездой

,

, а для соединенной треугольником

,

, получим, независимо от вида соединения

где - сдвиг по фазе между фазным напряжением и фазным током (cosφ– коэффициент мощности).

Аналогично для реактивной и полной мощностей при симметричной нагрузке получим:

В случае несимметричной нагрузки мощности рассчитываются для каждой из фаз нагрузки (источника) отдельно и затем складываются.

Для измерения мощности в четырех проводной трехфазной цепи соединенной звездой ваттметры включают по схеме, приведенной на рис. 7.9.


Полная мощность, потребляемая нагрузкой, будет равна сумме показаний трех вольтметров, включенных в фазы А, В и С . В трех проводной цепи обходятся двумя ваттметрами, включенными по схеме, приведенной на рис. 7.10.


Покажем, что мощность, показываемая двумя ваттметрами, будет равно полной мощности трехфазной цепи (так называемая схема двух ваттметров, или схема Аарона).

Выдающийся русский инженер-изобретатель Михаил Осипович Доливо-Добровольский, помимо асинхронного двигателя изобрел трехфазную электрическую сеть , которая могла бы питать такой двигатель.

Трехфазная система представляет собой три отдельные электрические цепи, в которых действуют синусоидальные ЭДС одной и той же частоты, которые в свою очередь сдвинуты друг от друга на 120°, и создаваемые одним источником энергии. Источником энергии чаще всего выступает трехфазный генератор.

Преимущество трехфазной цепи заключается в её уравновешенности. То есть суммарная мгновенная мощность трехфазной цепи, остается величиной постоянной в течение всего периода ЭДС.

Трехфазный генератор переменного тока имеет три самостоятельные обмотки, которые сдвинуты между собой на угол 120°. Также как и обмотки, начальные фазы ЭДС сдвинуты на 120°. Уравнения описывающие изменение ЭДС в каждой из обмоток выглядят следующим образом:

Векторная диаграмма ЭДС в начальный момент времени представляет собой три вектора, длина которых равна амплитудному значению ЭДС Em, и угол между которыми равен 120°. Если вращать векторы против часовой стрелке, относительно неподвижной оси, то они будут проходить в порядке Ea,Eb,Ec, такой порядок называют прямой последовательностью .



По сути, каждую отдельную фазу можно было бы соединить отдельными проводами, но в таком случае получилась бы шестипроводная несвязная система. Это было бы крайне не выгодно с экономичной точки зрения, ведь как-никак, перерасход материала. Для того чтобы это избежать придумали связанные системы соединения.

Соединение звездой

При соединении обмоток звездой все три фазы имеют одну общую точку – ноль. При этом такая система может быть трехпроводной или четырехпроводной. В последнем случае используется нулевой провод. Нулевой провод не нужен, если система симметрична, то есть токи в фазах такой системы одинаковы. Но если нагрузка несимметрична, то фазные токи различны, и в нулевом проводе возникает ток, который равен векторной сумме фазных токов

Также, нулевой провод может выступать в роле одной из фаз, если она выйдет из строя, это предотвратит выход из строя всей системы. Правда нужно учитывать, что нулевой провод не рассчитан на подобные нагрузки, и в целях экономии металла и изоляции он изготавливает под более малые токи, чем в фазах.

В трехфазных цепях существуют так называемые фазные и линейные напряжения и токи.

Фазное напряжение – это разность потенциалов между нулевой точкой и линейным проводом. То есть, проще говоря, фазное напряжение - это напряжение на фазе.

Линейное напряжение – это разность потенциалов между линейными проводами.

При соединении звездой фазные и линейные напряжения соотносятся как

А фазные и линейные токи при симметричной нагрузке одинаковы

Таким образом, можно сделать вывод, что в симметричной трехфазной цепи при соединении фаз звездой напряжения отличаются друг от друга в 1,72 раз, а линейные и фазные токи равны.

Соединение треугольником

При соединении треугольником конец одной обмотки соединяется с началом другой. Таким образом, образуется замкнутый контур.



В таком соединении каждая фаза находится под линейным напряжением, то есть линейные и фазные напряжения равны

А фазные и линейные токи соотносятся как

Аналогичным способом, сделаем вывод для соединения треугольником: в симметричной трехфазной цепи при соединении фаз треугольником токи отличаются друг от друга в 1,72 раз, а линейные и фазные напряжения равны.