Главная · Сети · Уран элемент. Свойства, добыча, применение и цена урана. Уран, химический элемент: история открытия и реакция деления ядра

Уран элемент. Свойства, добыча, применение и цена урана. Уран, химический элемент: история открытия и реакция деления ядра


(по Полингу) 1.38 U←U 4+ -1.38В
U←U 3+ -1.66В
U←U 2+ -0.1В 6, 5, 4, 3 Термодинамические свойства 19.05 / ³ 0.115 /( ·) 27.5 /( ·) 1405.5 12.6 / 4018 417 / 12.5 ³/ Кристаллическая решётка орторомбическая 2.850 Отношение c/a n/a n/a

История

Ещё в древнейшие времена (I-й век до нашей эры) природная урана использовалась для изготовления жёлтой глазури для .

Уран был открыт в 1789 немецким химиком Мартином Генрихом Клапротом (Klaproth) при исследовании минерала («урановая смолка»). Назван им в честь , открытой в 1781. В металлическом состоянии уран получен в 1841 французским химиком Эженом Пелиго при восстановлении UCl 4 металлическим калием. урана обнаружил в 1896 француз . Первоначально урану приписывали 116, но в 1871 пришел к выводу, что ее надо удвоить. После открытия элементов с атомными номерами от 90 до 103 американский химик Г.Сиборг пришел к выводу, что эти элементы () правильнее располагать в периодической системе в одной клетке с элементом № 89 . Такое расположение связано с тем, что у актиноидов происходит достройка 5f-электронного подуровня.

Нахождение в природе

Уран - характерный элемент для гранитного слоя и осадочной оболочки земной коры. Содержание в земной коре 2,5 10 -4 % по массе. В морской воде концентрация урана менее 10 -9 г/л, всего в морской воде содержится от 10 9 до 10 10 тонн урана. В свободном виде уран в земной коре не встречается. Известно около 100 минералов урана, важнейшие из них U 3 O 8 , уранинит (U,Th)O 2 , урановая смоляная руда (содержит оксиды урана переменного состава) и тюямунит Ca[(UO 2) 2 (VO 4) 2 ] 8H 2 O.

Изотопы

Природный Уран состоит из смеси трёх изотопов: 238 U - 99,2739%, период полураспада T 1 / 2 = 4,51Ї10 9 лет, 235 U - 0,7024% (T 1 / 2 = 7,13Ї10 8 лет) и 234 U - 0,0057% (T 1 / 2 = 2,48Ї10 5 лет).

Известно 11 искусственных радиоактивных изотопов с массовыми числами от 227 до 240.

Наиболее долгоживущий - 233 U (T 1 / 2 = 1,62Ї10 5 лет) получается при облучении тория нейтронами.

Изотопы урана 238 U и 235 U являются родоначальниками двух радиоактивных рядов.

Получение

Самая первая стадия уранового производства - концентрирование. Породу дробят и смешивают с водой. Тяжелые компоненты взвеси осаждаются быстрее. Если порода содержит первичные минералы урана, то они осаждаются быстро: это тяжелые минералы. Вторичные минералы элемента № 92 легче, в этом случае раньше оседает тяжелая пустая порода. (Впрочем, далеко не всегда она действительно пустая; в ней могут быть многие полезные элементы, в том числе и уран).

Следующая стадия - выщелачивание концентратов, перевод элемента № 92 в раствор. Применяют кислотное и щелочное выщелачивание. Первое - дешевле, поскольку для извлечения урана используют . Но если в исходном сырье, как, например, в урановой смолке , уран находится в четырехвалентном состоянии, то этот способ неприменим: четырехвалентный уран в серной кислоте практически не растворяется. И либо нужно прибегнуть к щелочному выщелачиванию, либо предварительно окислять уран до шестивалентного состояния.

Не применяют кислотное выщелачивание и в тех случаях, если урановый концентрат содержит или . Слишком много кислоты приходится тратить на их растворение, и в этих случаях лучше воспользоваться ( ).

Проблему выщелачивания урана из решает кислородная продувка. В нагретую до 150 °C смесь урановой руды с минералами подают поток . При этом из сернистых минералов образуется , которая и вымывает уран.

На следующем этапе из полученного раствора нужно избирательно выделить уран. Современные методы - и - позволяют решить эту проблему.

Раствор содержит не только уран, но и другие . Некоторые из них в определенных условиях ведут себя так же, как уран: экстрагируются теми же растворителями, оседают на тех же ионообменных смолах, выпадают в осадок при тех же условиях. Поэтому для селективного выделения урана приходится использовать многие окислительно-восстановительные реакции, чтобы на каждой стадии избавляться от того или иного нежелательного попутчика. На современных ионообменных смолах уран выделяется весьма селективно.

Методы ионного обмена и экстракции хороши еще и тем, что позволяют достаточно полно извлекать уран из бедных растворов, в литре которых лишь десятые доли грамма элемента № 92.

После этих операций уран переводят в твердое состояние - в один из оксидов или в тетрафторид UF 4 . Но этот уран еще надо очистить от примесей с большим сечением захвата тепловых нейтронов - , . Их содержание в конечном продукте не должно превышать стотысячных и миллионных долей процента. Вот и приходится уже полученный технически чистый продукт еще раз растворять - на этот раз в . Уранилнитрат UO 2 (NO 3) 2 при экстракции трибутил-фосфатом и некоторыми другими веществами дополнительно очищается до нужных кондиций. Затем это вещество кристаллизуют (или осаждают пероксид UO 4 ·2H 2 O) и начинают осторожно прокаливать. В результате этой операции образуется трехокись урана UO 3 , которую восстанавливают до UO 2 .

Это вещество - предпоследнее на пути от руды к металлу. При температуре от 430 до 600 °C оно реагирует с сухим фтористым водородом и превращается в тетрафторид UF 4 . Именно из этого соединения обычно получают металлический уран. Получают с помощью или обычным .

Физические свойства

Уран очень тяжелый, серебристо-белый глянцеватый металл. В чистом виде он немного мягче стали, ковкий, гибкий, обладает небольшими парамагнитными свойствами. Уран имеет три аллотропные формы: альфа (призматическая, стабильна до 667.7 °C), бета (четырехугольная, стабильна от 667.7 до 774.8 °C), гамма (с объемно центрированной кубической структурой, существующей от 774.8 °C до точки плавления).

Химические свойства

Химическая активность металлического урана высока. На воздухе он покрывается радужной пленкой . Порошкообразный уран , он самовозгорается при температуре 150-175 °C. При сгорании урана и термическом разложении многих его соединений на воздухе образуется оксид урана U 3 O 8 . Если этот оксид нагревать в атмосфере при температуре выше 500 °C, образуется UO 2 . При сплавлении оксидов урана с оксидами других металлов образуются уранаты: К 2 UO 4 (уранат калия), СаUO 4 (уранат кальция), Na 2 U 2 O 7 (диуранат натрия).

Применение

Ядерное топливо

Наибольшее применение имеет урана 235 U, в котором возможна самоподдерживающаяся . Поэтому этот изотоп используется как топливо в , а также в (критическая масса около 48 кг). Выделение изотопа U 235 из природного урана - сложная технологическая проблема, (см. ). Изотоп U 238 способен делиться под влиянием бомбардировки высокоэнергетическими нейтронами, эту его особенность используют для увеличения мощности (используются нейтроны, порожденные термоядерной реакцией). В результате захвата нейтрона с последующим β-распадом 238 U может превращаться в 239 , который затем используется как ядерное топливо.

Уран-233 искуственно получаемый в реакторах (посредством облучения нейтронами и превращающегося в и затем в уран-233) является ядерным топливом для атомных электростанций и производства атомных бомб (критическая масса около 16 кг). Уран-233 так же наиболее перспективное топливо для газофазных ядерных ракетных двигателей.

Другие сферы применения

  • Небольшая добавка урана придаёт красивый зеленовато-жёлтый оттенок стеклу.
  • Карбид урана-235 в сплаве с карбидом ниобия и карбидом циркония применяется в качестве топлива для ядерных реактивных двигателей (рабочее тело - водород+гексан).
  • Сплавы железа и обедненного урана (уран-238) применяются как мощные магнитострикционные материалы.
  • В начале ХХ века уранилнитрат широко применялся в качестве вирирующего агента для получения тонированных фотографических отпечатков.

Обеднённый уран

После извлечения U-235 из природного урана, оставшийся материал носит название «обедненный уран», так как он обеднен 235-ым изотопом. По некоторым данным в США хранится около 560 000 тонн обедненного гексафторида урана (UF 6). Обедненный уран в два раза менее радиоактивен, чем природный уран, в основном за счет удаления из него U-234. Из-за того, что основное использование урана - производство энергии, обедненный уран бесполезный продукт с низкой экономическое ценностью.

В основном его использование связано с большой плотностью урана и относительно низкой его стоимостью: использование его для радиационной защиты (как это не странно) и как балластная масса в аэрокосмических применениях, таких как рулевые поверхности летательных аппаратов. В каждом самолете содержится 1500 кг обедненного урана для этих целей. Еще этот материал применяется в высокоскоростных роторах гироскопов, больших маховиках, как балласт в космических спускаемых аппаратах и гоночных яхтах, при бурении нефтяных скважин.

Сердечники бронебойных снарядов

Самое известное применение урана - в качестве сердечников для американских . При сплавлении с 2% или 0.75% и термической обработке (быстрая закалка разогретого до 850 °С металла в воде или масле, дальнейшее выдерживание при 450 °С 5 часов) металлический уран становится тверже и прочнее (прочность на разрыв больше 1600 МПа, при том, что у чистого урана он равен 450 МПа). В сочетании с большой плотностью, это делает закаленную урановую болванку чрезвычайно эффективным средством для пробивания брони, аналогичным по эффективности более дорогому . Процесс разрушения брони сопровождается измельчением в пыль урановой болванки и воспламенением ее на воздухе с другой стороны брони. Около 300 тонн обедненного урана остались на поле боя во время операции «Буря в Пустыне» (по большей части это остатки снарядов 30-мм пушки GAU-8 штурмовых самолетов A-10, каждый снаряд содержит 272 г уранового сплава).

Такие снаряды были использованы войсками НАТО в боевых действиях на территории Югославии. После их применения обсуждалась экологическая проблема радиационного загрязнения территории страны.

Обедненный уран используется в современной танковой броне, например, танка .

Физиологическое действие

В микроколичествах (10 -5 -10 -8 %) обнаруживается в тканях растений, животных и человека. В наибольшей степени накапливается некоторыми грибами и водорослями. Соединения урана всасываются в желудочно-кишечном тракте (около 1 %), в легких - 50 %. Основные депо в организме: селезенка, и бронхо-легочные . Содержание в органах и тканях человека и животных не превышает 10 -7 г.

Уран и его соединения токсичны . Особенно опасны аэрозоли урана и его соединений. Для аэрозолей растворимых в воде соединений урана ПДК в воздухе 0,015 мг/м 3 , для нерастворимых форм урана 0,075 мг/м 3 . При попадании в организм уран действует на все органы, являясь общеклеточным ядом. Молекулярный механизм действия урана связан с его способностью подавлять активность . В первую очередь поражаются (появляются белок и сахар в моче, ). При хронической возможны нарушения кроветворения и нервной системы.

Добыча урана в мире

Согласно «Красной книге по урану», выпущенной , в 2005 добыто 41250 тонн урана (в 2003 - 35492 тонны). Согласно данным ОЭСР, в мире функционирует 440 коммерческого назначения, которые потребляют в год 67 тыс. тонн урана. Это означает, что его производство обеспечивает лишь 60 % объема его потребления (остальное извлекается из старых ядерных боеголовок).

Добыча по странам в тоннах по содержанию U на 2005-2006 гг.

Добыча в России

Остальные 7 % получают методом подземного выщелачивания ЗАО «Далур» () и ОАО «Хиагда» ().

Полученные руды и урановый концентрат перерабатываются на Чепецком механическом заводе.

См. также

Ссылки


В статье рассказывается о том, когда был открыт такой химический элемент, как уран, и в каких отраслях производства в наше время применяется это вещество.

Уран - химический элемент энергетической и военной промышленности

Во все времена люди пытались найти высокоэффективные источники энергии, а в идеале - создать так называемый К сожалению, невозможность его существования теоретически доказали и обосновали еще в XIX веке, но ученые все равно никогда не теряли надежды воплотить в жизнь мечту о некоего рода устройстве, которое было бы способно выдавать большое количество «чистой» энергии на протяжении очень долгого времени.

Частично это удалось воплотить в жизнь с открытием такого вещества, как уран. Химический элемент с данным названием лег в основу разработки атомных реакторов, которые в наше время обеспечивают энергией целые города, подводные лодки, полярные суда и прочее. Правда, «чистой» их энергию назвать нельзя, но в последние годы множество фирм разрабатывают для широкой продажи компактные «атомные батарейки» на основе трития - в них нет подвижных частей и они безопасны для здоровья.

Однако в этой статье мы подробно разберем историю открытия химического элемента под названием уран и реакцию деления его ядер.

Определение

Уран - химический элемент, который имеет атомный номер 92 в периодической таблице Менделеева. Атомная же масса его составляет 238,029. Обозначается он символом U. В нормальных условиях является плотным, тяжелым металлом серебристого цвета. Если говорить о его радиоактивности, то сам по себе уран - элемент, обладающий слабой радиоактивностью. Также он не имеет в своем составе полностью стабильных изотопов. А самым стабильным из существующих изотопов считается уран-338.

С тем, что собой представляет данный элемент, мы разобрались, а теперь рассмотрим историю его открытия.

История

Такое вещество, как природная окись урана, известно людям с глубокой древности, а использовали ее древние мастера для изготовления глазури, которой покрывали различную керамику для водонепроницаемости сосудов и других изделий, а также их украшения.

Важной датой в истории открытия этого химического элемента стал 1789 год. Именно тогда химик и немец по происхождению Мартин Клапрот смог получить первый металлообразный уран. А свое название новый элемент получил в честь открытой восемью годами ранее планеты.

Почти 50 лет полученный тогда уран считали чистым металлом, однако, в 1840 году химик из Франции Эжен-Мелькьор Пелиго смог доказать, что материал, полученный Клапротом, несмотря на подходящие внешние признаки, вовсе не металл, а оксид урана. Чуть позже все тот же Пелиго получил настоящий уран - очень тяжелый металл серого цвета. Именно тогда впервые и был определен атомный вес такого вещества, как уран. Химический элемент в 1874 году был помещён Дмитрием Менделеевым в его знаменитую периодическую систему элементов, причём Менделеев удвоил атомный вес вещества в два раза. И лишь спустя 12 лет опытным путем было доказано, что не ошибался в своих расчетах.

Радиоактивность

Но по-настоящему широкая заинтересованность этим элементом в научных кругах началась в 1896 году, когда Беккерель открыл тот факт, что уран испускает лучи, которые были названы в честь исследователя - лучи Беккереля. Позже одна из знаменитейших учёных в этой области - Мария Кюри, назвала это явление радиоактивностью.

Следующей важной датой в изучении урана принято считать 1899 год: именно тогда Резерфорд обнаружил, что излучение урана является неоднородным и делится на два типа - альфа- и бета-лучи. А год спустя Поль Виллар (Вийяр) открыл и третий, последний известный нам на сегодняшний день тип радиоактивного излучения - так называемые гамма-лучи.

Спустя семь лет, в 1906 году, Резерфорд на основе своей теории радиоактивности провел первые опыты, цель которых заключалась в том, чтобы определить возраст различных минералов. Эти исследования положили начало в том числе формированию теории и практики

Деление ядер урана

Но, наверное, наиважнейшее открытие, благодаря которому началась широкая добыча и обогащение урана как в мирных, так и военных целях, - это процесс деления ядер урана. Произошло это в 1938 году, открытие было осуществлено силами немецких физиков Отто Гана и Фрица Штрассмана. Позже эта теория получила научные подтверждения в работах еще нескольких немецких физиков.

Суть открытого ими механизма состояла в следующем: если облучать ядро изотопа урана-235 нейтроном, то, захватывая свободный нейтрон, оно начинает делиться. И, как мы все теперь знаем, процесс этот сопровождается выделением колоссального количества энергии. Происходит это в основном благодаря кинетической энергии самого излучения и осколков ядра. Так что теперь мы знаем, как происходит деление ядер урана.

Открытие этого механизма и его результатов и является отправной точкой для использования урана как в мирных, так и военных целях.

Если говорить о его применении в военных целях, то впервые теорию о том, что можно создать условия для такого процесса, как непрерывная реакция деления ядра урана (поскольку для подрыва ядерной бомбы необходима огромная энергия), доказали советские физики Зельдович и Харитон. Но чтобы создать такую реакцию, уран должен быть обогащен, поскольку в обычном своем состоянии нужными свойствами он не обладает.

С историей этого элемента мы ознакомились, теперь разберемся, где же он применяется.

Применение и виды изотопов урана

После открытия такого процесса, как реакция цепного деления урана, перед физиками стал вопрос, где можно его использовать?

В настоящее время существует два основных направления, где используют изотопы урана. Это мирная (или энергетическая) промышленность и военная. И первая, и вторая использует реакцию изотопа урана-235, отличается лишь выходная мощность. Проще говоря, в атомном реакторе нет необходимости создавать и поддерживать этот процесс с той же мощностью, какая необходима для осуществления взрыва ядерной бомбы.

Итак, были перечислены основные отрасли, в которых используется реакция деления урана.

Но получение изотопа урана-235 - это необычайно сложная и затратная технологическая задача, и не каждое государство может позволить себе построить обогатительные фабрики. К примеру, для получения двадцати тонн уранового топлива, в котором содержание изотопа урана 235 будет составлять от 3-5%, потребуется обогатить более 153 тонн природного, «сырого» урана.

Изотоп урана-238 в основном применяют в конструктивной схеме ядерного оружия для увеличения его мощности. Также при захвате им нейтрона с последующим процессом бета-распада этот изотоп может со временем превращаться в плутоний-239 - распространенное топливо для большинства современных атомных реакторов.

Несмотря на все недостатки таких реакторов (большая стоимость, сложность обслуживания, опасность аварии), их эксплуатация окупается очень быстро, и энергии они производят несравнимо больше, чем классические тепловые или гидроэлектростанции.

Также реакция позволила создать ядерное оружие массового поражения. Оно отличается огромной силой, относительной компактностью и тем, что способно делать непригодным для проживания людей большие площади земли. Правда, в современном атомном оружии применяется плутоний, а не уран.

Обедненный уран

Существует и такая разновидность урана, как обедненный. Он отличается очень низким уровнем радиоактивности, а значит, не опасен для людей. Применяется он опять-таки в военной сфере, к примеру, его добавляют в броню американского танка «Абрамс» для придания ей дополнительной крепости. Помимо этого, практически во всех высокотехнологичных армиях можно встретить различные Помимо высокой массы, обладают они еще одним очень интересным свойством - после разрушения снаряда его осколки и металлическая пыль самовоспламеняются. И кстати, впервые такой снаряд применили во время Второй мировой войны. Как мы видим, уран - элемент, которому нашли применение в самых разных областях человеческой деятельности.

Заключение

По прогнозам ученых, примерно в 2030 году полностью истощатся все крупные месторождения урана, после чего начнется разработка труднодоступных его слоев и будет расти цена. Кстати, сама абсолютно безвредна для людей - некоторые шахтеры работают на его добыче целыми поколениями. Теперь мы разобрались в истории открытия этого химического элемента и в том, как применяют реакцию деления его ядер.

Кстати, известен интересный факт - соединения урана долгое время применялись в качестве красок для фарфора и стекла (так называемое вплоть до 1950-х годов.

; атомный номер 92, атомная масса 238,029; металл. Природный Уран состоит из смеси трех изотопов: 238 U - 99,2739% с периодом полураспада T ½ = 4,51·10 9 лет, 235 U - 0,7024% (T ½ = 7,13·10 8 лет) и 234 U - 0,0057% (T ½ = 2,48·10 5 лет).

Из 11 искусственных радиоактивных изотопов с массовыми числами от 227 до 240 долгоживущий - 233 U (T ½ = 1 ,62·10 5 лет); он получается при нейтронном облучении тория. 238 U и 235 U являются родоначальниками двух радиоактивных рядов.

Историческая справка. Уран открыт в 1789 немецким химиком М. Г. Клапротом и назван им в честь планеты Уран, открытой В. Гершелем в 1781. В металлическом состоянии Уран получен в 1841 французским химиком Э. Пелиго при восстановлении UCl 4 металлическим калием. Первоначально Уран приписывали атомную массу 120, и только в 1871 году Д. И. Менделеев пришел к выводу, что эту величину надо удвоить.

Длительное время уран представлял интерес только для узкого круга химиков и находил ограниченное применение для производства красок и стекла. С открытием явления радиоактивности Урана в 1896 году и радия в 1898 году началась промышленного переработка урановых руд с целью извлечения и использования радия в научных исследованиях и медицине. С 1942 года, после открытия в 1939 году явления деления ядер, Уран стал основным ядерным топливом.

Распространение Урана в природе. Уран - характерный элемент для гранитного слоя и осадочной оболочки земной коры. Среднее содержание Урана в земной коре (кларк) 2,5·10 -4 % по массе, в кислых изверженных породах 3,5·10 -4 %, в глинах и сланцах 3,2·10 -4 %, в основных породах 5 ·10 -5 %, в ультраосновных породах мантии 3·10 -7 %. Уран энергично мигрирует в холодных и горячих, нейтральных и щелочных водах в форме простых и комплексных ионов, особенно в форме карбонатных комплексов. Важную роль в геохимии Урана играют окислительно-восстановительные реакции, поскольку соединения Урана, как правило, хорошо растворимы в водах с окислительной средой и плохо растворимы в водах с восстановительной средой (например, сероводородных).

Известно около 100 минералов Урана; промышленное значение имеют 12 из них. В ходе геологической истории содержание Урана в земной коре уменьшилось за счет радиоактивного распада; с этим процессом связано накопление в земной коре атомов Рb, He. Радиоактивный распад Урана играет важную роль в энергетике земной коры, являясь существенным источником глубинного тепла.

Физические свойства Урана. Уран по цвету похож на сталь, легко поддается обработке. Имеет три аллотропических модификации - α, β и γ с температурами фазовых превращений: α → β 668,8 °С, β → γ 772,2 °С; α-форма имеет ромбическую решетку (а = 2,8538Å, b = 5.8662Å, с = 4.9557Å), β-форма - тетрагональную решетку (при 720 °С а = 10,759Å, b = 5,656Å), γ-форма - объемноцентрированную кубическую решетку (при 850 °С а = 3,538Å). Плотность Урана в α-форме (25 °С) 19,05 г/см 3 ; t пл 1132 °С; t кип 3818 °С; теплопроводность (100-200 °С), 28,05 вт/(м·К) , (200-400 °С) 29,72 вт/(м·К) ; удельная теплоемкость (25 °С) 27,67 кдж/(кг·К) ; удельное электросопротивление при комнатной температуре около 3·10 -7 ом·см, при 600 °С 5,5·10 -7 ом·см; обладает сверхпроводимостью при 0,68 К; слабый парамагнетик, удельная магнитная восприимчивость при комнатной температуре 1,72·10 -6 .

Механические свойства Урана зависят от его чистоты, от режимов механической и термической обработки. Среднее значение модуля упругости для литого Уран 20,5·10 -2 Мн/м 2 ; предел прочности при растяжении при комнатной температуре 372-470 Мн/м 2 ; прочность повышается после закалки из β- и γ-фаз; средняя твердость по Бринеллю 19,6-21,6·10 2 Мн/м 2 .

Облучение потоком нейтронов (которое имеет место в ядерном реакторе) изменяет физико-механические свойства Урана: развивается ползучесть и повышается хрупкость, наблюдается деформация изделий, что заставляет использовать Уран в ядерных реакторах в виде различных урановых сплавов.

Уран - радиоактивный элемент. Ядра 235 U и 233 U делятся спонтанно, а также при захвате как медленных (тепловых), так и быстрых нейтронов с эффективным сечением деления 508·10 -24 см 2 (508 барн) и 533·10 -24 см 2 (533 барн) соответственно. Ядра 238 U делятся при захвате только быстрых нейтронов с энергией не менее 1 Мэв; при захвате медленных нейтронов 238 U превращается в 239 Рu, ядерные свойства которого близки к 235 U. Критическая масса Урана (93,5% 235 U) в водных растворах составляет менее 1 кг, для открытого шара - около 50 кг, для шара с отражателем - 15-23 кг; критическая масса 233 U- примерно 1/3 критической массы 235 U.

Химические свойства Урана. Конфигурация внешней электронной оболочки атома Урана 7s 2 6d l 5f 3 . Уран относится к реакционноспособным металлам, в соединениях проявляет степени окисления +3, +4, + 5, +6, иногда +2; наиболее устойчивы соединения U (IV) и U (VI). На воздухе медленно окисляется с образованием на поверхности пленки оксида (IV), которая не предохраняет металл от дальнейшего окисления. В порошкообразном состоянии Уран пирофорен и горит ярким пламенем. С кислородом образует оксид (IV) UO 2 , оксид (VI) UО 3 и большое число промежуточных оксидов, важнейший из которых U 3 O 8 . Эти промежуточные оксиды по свойствам близки к UO 2 и UO 3 . При высоких температуpax UO 2 имеет широкую область гомогенности от UO 1, 60 до UO 2,27 . С фтором при 500-600 °С образует тетрафторид UF 4 (зеленые игольчатые кристаллы, малорастворимые в воде и кислотах) и гексафторид UF 6 (белое кристаллическое вещество, возгоняющееся без плавления при 56,4 °С); с серой - ряд соединений, из которых наибольшее значение имеет US (ядерное горючее). При взаимодействии Урана с водородом при 220 °С получается гидрид UH 3 ; с азотом при температуре от 450 до 700 °С и атмосферном давлении - нитрид U 4 N 7 , при более высоком давлении азота и той же температуре можно получить UN, U 2 N 3 и UN 2 ; с углеродом при 750-800 °С - монокарбид UC, дикарбид UC 2 , а также U 2 С 3 ; с металлами образует сплавы различных типов. Уран медленно реагирует с кипящей водой с образованием UO 2 н Н 2 , с водяным паром - в интервале температур 150-250 °С; растворяется в соляной и азотной кислотах, слабо - в концентрированной плавиковой кислоте. Для U (VI) характерно образование иона уранила UO 2 2+ ; соли уранила окрашены в желтый цвет и хорошо растворимы в воде и минеральных кислотах; соли U (IV) окрашены в зеленый цвет и менее растворимы; ион уранила чрезвычайно способен к комплексообразованию в водных растворах как с неорганических, так и с органических веществами; наиболее важны для технологии карбонатные, сульфатные, фторидные, фосфатные и других комплексы. Известно большое число уранатов (солей не выделенной в чистом виде урановой кислоты), состав которых меняется в зависимости от условий получения; все уранаты имеют низкую растворимость в воде.

Уран и его соединения радиационно и химически токсичны. Предельно допустимая доза (ПДД) при профессиональном облучении 5 бэр в год.

Получение Урана. Уран получают из урановых руд, содержащих 0,05-0,5% U. Руды практически не обогащаются, за исключением ограниченного способа радиометрической сортировки, основанной на γ-излучении радия, всегда сопутствующего урану. В основном руды выщелачивают растворами серной, иногда азотной кислот или растворами соды с переводом Урана в кислый раствор в виде UО 2 SO 4 или комплексных анионов 4- , а в содовый раствор - в виде 4- . Для извлечения и концентрирования Урана из растворов и пульп, а также для очистки от примесей применяют сорбцию на ионообменных смолах и экстракцию органических растворителями (трибутилфосфат, алкилфосфорные кислоты, амины). Далее из растворов добавлением щелочи осаждают уранаты аммония или натрия или гидрооксид U(OH) 4 . Для получения соединений высокой степени чистоты технические продукты растворяют в азотной кислоте и подвергают аффинажным операциям очистки, конечными продуктами которых являются UO 3 или U 3 О 8 ; эти оксиды при 650-800 °С восстанавливаются водородом или диссоциированным аммиаком до UO 2 с последующим переводом его в UF 4 обработкой газообразным фтористым водородом при 500-600 °С. UF 4 может быть получен также при осаждении кристаллогидрата UF 4 ·nН 2 О плавиковой кислотой из растворов с последующим обезвоживанием продукта при 450 °С в токе водорода. В промышленности основные способом получения Уран из UF 4 является его кальциетермическим или магниетермическим восстановление с выходом Урана в виде слитков массой до 1,5 т. Слитки рафинируются в вакуумных печах.

Очень важным процессом в технологии Урана является обогащение его изотопом 235 U выше естественного содержания в рудах или выделение этого изотопа в чистом виде, поскольку именно 235 U - основные ядерное горючее; осуществляется это методами газовой термодиффузии, центробежными и другими методами, основанными на различии масс 238 U и 235 U; в процессах разделения Уран используется в виде летучего гексафторида UF 6 . При получении Урана высокой степени обогащения или изотопов учитываются их критические массы; наиболее удобный способ в этом случае - восстановление оксидов Урана кальцием; образующийся при этом шлак СаО легко отделяется от Урана растворением в кислотах. Для получения порошкообразного Урана, оксида (IV), карбидов, нитридов и других тугоплавких соединений применяются методы порошковой металлургии.

Применение Урана. Металлический Уран или его соединения используются в основном в качестве ядерного горючего в ядерных реакторах. Природная или малообогащенная смесь изотопов Урана применяется в стационарных реакторах атомных электростанций, продукт высокой степени обогащения - в ядерных силовых установках или в реакторах, работающих на быстрых нейтронах. 235 U является источником ядерной энергии в ядерном оружии. 238 U служит источником вторичного ядерного горючего - плутония.

Уран в организме. В микроколичествах (10 -5 -10 -8 %) обнаруживается в тканях растений, животных и человека. В золе растений (при содержании Уран в почве около 10 -4 %) его концентрация составляет 1,5·10 -5 %. В наибольшей степени Уран накапливается некоторыми грибами и водорослями (последние активно участвуют в биогенной миграции Урана по цепи вода - водные растения - рыба - человек). В организм животных и человека Уран поступает с пищей и водой в желудочно-кишечный тракт, с воздухом в дыхательные пути, а также через кожные покровы и слизистые оболочки. Соединения Уран всасываются в желудочно-кишечном тракте - около 1% от поступающего количества растворимых соединений и не более 0,1% труднорастворимых; в легких всасываются соответственно 50% и 20%. Распределяется Уран в организме неравномерно. Основное депо (места отложения и накопления) - селезенка, почки, скелет, печень и, при вдыхании труднорастворимых соединений, - легкие и бронхолегочные лимфатические узлы. В крови Уран (в виде карбонатов и комплексов с белками) длительно не циркулирует. Содержание Уран в органах и тканях животных и человека не превышает 10 -7 г/г. Так, кровь крупного рогатого скота содержит 1·10 -8 г/мл, печень 8·10 -8 г/г, мышцы 4·10 -11 г/г, селезенка 9·10 8-8 г/г. Содержание Урана в органах человека составляет: в печени 6·10 -9 г/г, в легких 6·10 -9 -9·10 -9 г/г, в селезенке 4,7·10 -7 г/г, в крови 4-10 -10 г/мл, в почках 5,3·10 -9 (корковый слой) и 1,3·10 -8 г/г (мозговой слой), в костях 1·10 -9 г/г, в костном мозге 1 -Ю -8 г/г, в волосах 1,3·10 -7 г/г. Уран, содержащийся в костной ткани, обусловливает ее постоянное облучение (период полувыведения Урана из скелета около 300 суток). Наименьшие концентрации Урана - в головном мозге и сердце (10 -10 г/г). Суточное поступление Урана с пищей и жидкостями - 1,9·10 -6 г, с воздухом - 7·10 -9 г. Суточное выведение Уран из организма человека составляет: с мочой 0,5·10 -7 - 5·10 -7 г, с калом - 1,4·10 -6 -1,8·10 -6 г, с волосами - 2·10 -8 г.

По данным Международной комиссии по радиационной защите, среднее содержание Урана в организме человека 9·10 -5 г. Эта величина для различных районов может варьировать. Полагают, что Уран необходим для нормальной жизнедеятельности животных и растений.

Токсическое действие Уран обусловлено его химические свойствами и зависит от растворимости: более токсичны уранил и других растворимые соединения Урана. Отравления Ураном и его соединениями возможны на предприятиях по добыче и переработке уранового сырья и других промышленного объектах, где он используется в технологическом процессе. При попадании в организм Уран действует на все органы и ткани, являясь общеклеточным ядом. Признаки отравления обусловлены преимущественным поражением почек (появление белка и сахара в моче, последующая олигурия); поражаются также печень и желудочно-кишечный тракт. Различают острые и хронические отравления; последние характеризуются постепенным развитием и меньшей выраженностью симптомов. При хронической интоксикации возможны нарушения кроветворения, нервной системы и др. Полагают, что молекулярный механизм действия Урана связан с его способностью подавлять активность ферментов.

УРАН (названием в честь открытой незадолго до него планеты Уран; лат. uranium * а. uranium; н. Uran; ф. uranium; и. uranio), U, — радиоактивный химический элемент III группы периодической системы Менделеева , атомный номер 92, атомная масса 238,0289, относится к актиноидам. Природный уран состоит из смеси трёх изотопов: 238 U (99,282%, Т 1/2 4,468.10 9 лет), 235 U (0,712%, Т 1/2 0,704.10 9 лет), 234 U (0,006%, Т 1/2 0,244.10 6 лет). Известно также 11 искусственного радиоактивных изотопов урана с массовыми числами от 227 до 240. 238 U и 235 U — родоначальники двух естественные рядов распада, в результате которого они превращаются в стабильные изотопы 206 Pb и 207 Pb соответственно.

Уран открыт в 1789 в виде UO 2 немецким химиком М. Г. Клапротом. Металлический уран получен в 1841 французским химиком Э. Пелиго. Длительное время уран имел очень ограниченное применение, и только с открытием в 1896 радиоактивности началось его изучение и использование.

Свойства урана

В свободном состоянии уран представляет собой металл светло-серого цвета; ниже 667,7°С для него характерна ромбическая (а=0,28538 нм, b=0,58662 нм, с=0,49557 нм) кристаллическая решётка (а-модификация), в интервале температур 667,7-774°С — тетрагональная (а=1,0759 нм, с=0,5656 нм; Я-модификация), при более высокой температуре — объёмноцентрированная кубическая решётка (а=0,3538 нм, g-модификация). Плотность 18700 кг/м 3 , t плавления 1135°С, t кипения около 3818°С, молярная теплоёмкость 27,66 Дж/(моль.К), удельное электрическое сопротивление 29,0.10 -4 (Ом.м), теплопроводность 22,5 Вт/(м.К), температурный коэффициент линейного расширения 10,7.10 -6 К -1 . Температура перехода урана в сверхпроводящее состояние 0,68 К; слабый парамагнетик, удельная магнитная восприимчивость 1,72.10 -6 . Ядра 235 U и 233 U делятся спонтанно, а также при захвате медленных и быстрых нейтронов, 238 U делится только при захвате быстрых (более 1 МэВ) нейтронов. При захвате медленных нейтронов 238 U превращается в 239 Pu. Критическая масса урана (93,5% 235U) в водных растворах менее 1 кг, для открытого шара около 50 кг; для 233 U критического Масса составляет примерно 1/3 от критической массы 235 U.

Образование и содержание в природе

Основной потребитель урана — ядерная энергетика (ядерные реакторы, ядерные силовые установки). Кроме того, уран применяется для производства ядерного оружия. Все остальные области использования урана имеют резко подчинённое значение.

Уран представляет собой радиоактивный металл. В природе уран состоит из трех изотопов: уран-238, уран-235 и уран-234. Наивысший уровень стабильности фиксируется у урана-238.

Таблица 1. Таблица нуклидов
Характеристика Значение
Общие сведения
Название, символ Уран-238, 238U
Альтернативные названия ура́н оди́н, UI
Нейтронов 146
Протонов 92
Свойства нуклида
Атомная масса 238,0507882(20) а. е. м.
Избыток массы 47 308,9(19) кэВ
Удельная энергия связи (на нуклон) 7 570,120(8) кэВ
Изотопная распространённость 99,2745(106) %
Период полураспада 4,468(3)·109 лет
Продукты распада 234Th, 238Pu
Родительские изотопы 238Pa (β−)
242Pu (α)
Спин и чётность ядра 0+
Канал распада Энергия распада
α-распад 4,2697(29) МэВ
SF
ββ 1,1442(12) МэВ

Радиоактивный распад урана

Радиоакти́вным распа́дом называют процесс внезапного изменения состава или внутреннего строения атомных ядер, которые отличаются нестабильностью. При этом испускаются элементарные частицы, гамма-кванты и/или ядерные фрагменты. Радиоактивные вещества содержат радиоактивное ядро. Получившееся вследствие радиоактивного распада дочернее ядро может тоже стать радиоактивным и спустя определенное время подвергается распаду. Этот процесс происходит до того момента, пока не образуется стабильное ядро, лишенное радиоактивности. Э. Резерфорд методом эксперимента в 1899 доказал, что урановые соли испускают три вида лучей:

  • α-лучи - поток положительно заряженных частиц
  • β-лучи - поток отрицательно заряженных частиц
  • γ-лучи - не создают отклонений в магнитном поле.
Таблица 2. Радиоактивный распад урана
Вид излучения Нуклид Период полураспада
Ο Уран - 238 U 4,47 млрд. лет
α ↓
Ο Торий - 234 Th 24.1 суток
β ↓
Ο Протактиний - 234 Pa 1.17 минут
β ↓
Ο Уран - 234 U 245000 лет
α ↓
Ο Торий - 230 Th 8000 лет
α ↓
Ο Радий - 226 Ra 1600 лет
α ↓
Ο Полоний - 218 Po 3,05 минут
α ↓
Ο Свинец - 214 Pb 26,8 минут
β ↓
Ο Висмут - 214 Bi 19,7 минут
β ↓
Ο Полоний - 214 Po 0,000161 секунд
α ↓
Ο Свинец - 210 Pb 22,3 лет
β ↓
Ο Висмут - 210 Bi 5,01 суток
β ↓
Ο Полоний - 210 Po 138,4 суток
α ↓
Ο Свинец - 206 Pb стабильный

Радиоактивность урана

Естественная радиоактивность - вот что отличает радиоактивный уран от прочих элементов. Атомы урана не зависимо ни от каких факторов и условий постепенно изменяются. При этом испускаются невидимые лучи. После трансформаций, которые происходят с атомами урана, получается иной радиоактивный элемент и процесс повторяется. Он будет повторять столько раз, сколько необходимо, чтобы получился не радиоактивный элемент. К примеру, некоторые цепочки превращений насчитывают до 14 стадий. При этом промежуточным элементом является радий, а последняя стадия - образование свинца. Этот металл не является радиоактивным элементом, поэтому ряд превращений прерывается. Однако для полного превращения урана в свинец необходимо несколько миллиардов лет.
Радиоактивная руда урана часто становится причиной отравлений на предприятиях, занимающихся добычей и переработкой уранового сырья. В человеческом организме уран - общеклеточный яд. Он поражает главным образом почки, но встречаются и поражения печени и желудочно-кишечного тракта.
Уран не имеет полностью стабильных изотопов. Наибольший период жизни отмечается у урана-238. Полу распад урана-238 происходит на протяжении 4,4 млрд лет. Чуть меньше одного миллиарда лет идет полу распад урана-235 — 0,7 млрд лет. Уран-238 занимает свыше 99% всего объема природного урана. Вследствие его колоссального периода полураспада радиоактивность этого металла не высокая, к примеру, альфа-частицы не могут проникнуть через ороговевший слой кожи человека. После ряда проведенных исследований ученые выяснили, что главным источником радиации является не сам уран, а образуемый им газ радон, а также продукты его распада, попадающие в человеческий организм во время дыхания.